首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
因为f(x)在[0,1]上二阶可导,所以f(x)在[0,1]上连续且f(0)=f(1)=0,由闭区间上连续函数最值定理知,f(x)在[0,1]取到最小值且最小值在(0,1)内达到,即存在c∈(0,1),使得f(c)=-1,再由费马定理知f’(c)=0,根据
因为f(x)在[0,1]上二阶可导,所以f(x)在[0,1]上连续且f(0)=f(1)=0,由闭区间上连续函数最值定理知,f(x)在[0,1]取到最小值且最小值在(0,1)内达到,即存在c∈(0,1),使得f(c)=-1,再由费马定理知f’(c)=0,根据
admin
2022-10-09
56
问题
选项
答案
因为f(x)在[0,1]上二阶可导,所以f(x)在[0,1]上连续且f(0)=f(1)=0,由闭区间上连续函数最值定理知,f(x)在[0,1]取到最小值且最小值在(0,1)内达到,即存在c∈(0,1),使得f(c)=-1,再由费马定理知f’(c)=0,根据泰勒公式f(0)=f(c)+f’(c)(0-c)+f"(ξ
1
)/2!(0-c)
2
,ξ
1
∈(0,c),f(1)=f(c)+f’(c)(1-c)+f"(ξ
2
)/2!(1-c)
2
,ξ
2
∈(c,1),整理得f"(ξ
1
)=2/c
2
,f"(x)=2/(1-c)
2
,当c∈(0,1/2]时,f"(ξ
1
)=2/c
2
≥8,取ξ=ξ
1
;当c∈(1/2,1)时,f"(ξ
2
)=2/(1-c)
2
≥8,取ξ=ξ
2
.所以存在ξ∈(0,1),使得f"(x)≥8.
解析
转载请注明原文地址:https://kaotiyun.com/show/rOR4777K
0
考研数学三
相关试题推荐
设f(x)连续,且积分的结果与x无关,求f(x).
下列反常积分中发散的是()
设随机变量X关于随机变量Y的条件概率密度为而Y的概率密度为求X与Y是否相互独立?
设随机变量X和Y相互独立,且有相同的分布函数F(x),Z=X+Y,FZ(z)为Z的分布函数,则下列成立的是()
设f(x)为连续函数,且求f(x).
如果F(x)是f(x)的一个原函数,G(x)是的一个原函数,且F(x)G(x)=-1,f(0)=1,求f(x).
设函数又已知f′(x)连续,且f(0)=0.求A的值,使F(x)在x=0处连续;
设f(x)为二阶连续可导,且,证明级数绝对收敛.
设f(x)∈C[a,b],在(a,b)内二阶可导.(Ⅰ)若f(a=0,f(b)0.证明:存在ξ∈(a,6),使得f(ξ)f’’(ξ)+f’2(ξ)=0;(Ⅱ)若f(a)=f(b)==0,证明:存在η∈(a,b),使得f’’(η)=f(η).
随机试题
以下属于排除地表水的设施是()。
本病诊断为本病的治法
叶横切面观察上下表皮上的特征及附属物有
安装电缆时,1kV的电力电缆与控制电缆间距不应小于()mm。
中原城市群是以郑州为中心,以洛阳为副中心,以开封、新乡、焦作、许昌、平顶山、漯河、济源等地区性城市为节点构成的紧密联系圈。中原城市群内各城市联系日益紧密,基本形成了以郑州为中心的通达的交通网络。据此并结合下图回答问题。读下面两图,黄河小浪底水库蓄清排
在地球之外,究竟有没有外星人?两位美国学者花了5年的时间,在北半球天空到了37个可能是来自地球外文明的讯号。他们利用直径为26米的射电望远镜,_________由浩瀚宇宙深处发出的未知讯号。填入划横线部分最恰当的一项是:
人类社会的发展历史证明,中间阶层是社会的稳定器,他们有稳定的工作和收入,经济上乐于消费,政治上渴望稳定。中国目前的问题是中间阶层的规模还不够大,也不稳定,而且随着经济形势的变化,也开始面临失业的威胁。如果政府袖手旁观,置之不理,将不利于社会的稳定。
Science,beingahumanactivity,isnotimmunetofashion.【F1】Forexample,oneofthefirstmathematicianstostudythesubject
电子数字计算机最早的应用领域是_______。
ArchaeologistAndrejGaspariishauntedbypiecesofthepast.Hishometownriver,theLjubljanica,hasyieldedthousandsofthe
最新回复
(
0
)