首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是3×4阶矩阵且r(A)=1,设(1,一2,1,2)T,(1,0,5,2)T,(一1,2,0,1)T,(2,一4,3,a+1)T皆为AX=0的解. 求方程组AX=0的通解.
设A是3×4阶矩阵且r(A)=1,设(1,一2,1,2)T,(1,0,5,2)T,(一1,2,0,1)T,(2,一4,3,a+1)T皆为AX=0的解. 求方程组AX=0的通解.
admin
2016-10-23
37
问题
设A是3×4阶矩阵且r(A)=1,设(1,一2,1,2)
T
,(1,0,5,2)
T
,(一1,2,0,1)
T
,(2,一4,3,a+1)
T
皆为AX=0的解.
求方程组AX=0的通解.
选项
答案
因为(1,一2,1,2)
T
,(1,0,5,2)
T
,(一1,2,0,1)
T
线性无关,所以方程组AX=0的通解为X=k
1
(1,一2,1,2)
T
+k
2
(1,0,5,2)
T
+k
3
(一1,2,0,1)
T
(k
1
,k
2
,k
3
为任意常数).
解析
转载请注明原文地址:https://kaotiyun.com/show/rZT4777K
0
考研数学三
相关试题推荐
加工一个产品要经过三道工序,第一、二、三道工序不出废品的概率分别为0.9、0.95、0.8,若假定各工序是否出废品是独立的,求经过三道工序生产出的是废品的概率.
α1,α2是向量组(Ⅱ)的一个极大无关组,(Ⅱ)的秩为2,故(Ⅰ)的秩为2.由于(Ⅰ)线性相关,从而行列式|β1,β2,β3|=0,由此解得a=3b;又β3可由向量组(Ⅱ)线性表示,从而β3可由α1,α2线性表示,所以向量组α1,α2,β3线性相关,于是行
如果n个事件A1,A2,…,An相互独立,证明:
设f(x)是处处可导的奇函数,证明:对任-b>0,总存在c∈(-b,b)使得fˊ(c)=f(b)/b.
验证函数u=e-kn2tsinnx满足热传导方程ut=kuxx.
求密度为常数μ,半径为R的球体x2+y2+z2≤R2对位于点(0,0,a)(a>R)处单位质点的引力,并说明该引力如同将球的质量集中在球心时两质点间的引力.
用适当的变换将下列方程化为可分离变量的方程,并求出通解:;(2)(x+y)2yˊ=1;(3)xyˊ+y=yln(xy);(4)xyˊ+x+sin(x+y)=0.
设总体X的概率密度为而X1,X2…,Xn是来自总体X的简单随机样本,则未知参数θ的矩估计量为_________.
设两个随机变量X与Y独立同分布,P{X=-1}=P{Y=-1}=1/2,P{X=1}=P{Y=1}=1/2,则下列各式中成立的是().
一生产线生产的产品成箱包装,每箱的重量是随机的.假设每箱平均重50千克,标准差为5千克.若用最大载重为5吨的汽车承运,试利用中心极限定理说明每辆最多可以装多少箱,才能保障不超载的概率大于0.9777(Ф(2)=0.977,其中Ф(x)是标准正态分布函数).
随机试题
设y=y(χ)是微分方程y〞+(χ-1)y′+χ2y=eχ满足初始条件y(0)=0,y′(0)=1的解,则为().
肱骨外科颈骨折合并肩关节脱位,在检查时可发现
慢性支气管炎临床稳定期,预防急性发作的下列方法中哪项不正确
关于破产财产的分配,下列说法不正确的是:()
【2009年】注册会计师组织项目组内部讨论的内容有()。
以太网在检测到()次冲突后,控制器会放弃发送数据。
【2012年临沂市】义务教育具有强制性、免费性和()。
加快建设节约型社会的重要战略意义()。
某企业接到生产某产品的订单,每台产品需要A,B,C三种部件的数量分别为2,2,1件。已知每个工人每天可生产A部件6件,或B部件3件,或C部件2件。该企业计划安排200名工人分成三组分别生产这三种部件.则每天最多可生产多少台产品?
当代资本主义国家在经济调节机制变化的同时。经济危机形态也发生了变化,主要表现在
最新回复
(
0
)