首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
试分别按函数极限的 (1)定义; (2)柯西准则; (3)归结原则, 写出f(x)在x→x0时极限不存在”的正确陈述,行以狄利克雷函数:为例说明x→1时D(x)的极限不存在.
试分别按函数极限的 (1)定义; (2)柯西准则; (3)归结原则, 写出f(x)在x→x0时极限不存在”的正确陈述,行以狄利克雷函数:为例说明x→1时D(x)的极限不存在.
admin
2022-10-31
22
问题
试分别按函数极限的
(1)定义;
(2)柯西准则;
(3)归结原则,
写出f(x)在x→x
0
时极限不存在”的正确陈述,行以狄利克雷函数:
为例说明x→1时D(x)的极限不存在.
选项
答案
(1)对[*]A∈R,[*]ε
0
>0.对无论多么小的δ>0.总有x’∈U
0
(x
0
,δ).使得|f(x’)-A|≥ε
0
. 以D(x)为例:若A≠1,则ε
0
=[*],对[*]δ>0.由实数的稠密性,[*]有理数x’∈U
0
(1;δ),使得D(x’)=1,从而有 |D(x’)-A|=|1-A|≥[*]=ε
0
. 若A=1.则取ε
0
=1/2,对[*]δ>0,由实数的稠密性,[*]无理数x”∈U
0
(1;δ),使得D(x”)=0.从而有 |D(x”)-A|=|D(x”)-1|-1>1/2=ε
0
. (2)[*]ε
0
>0,对无论多么小的δ>0,总存在x’,x”∈U
0
(x
0
;δ),使得|f(x’)-f(x”)|≥ε
0
. 以D(x)为例:取ε
0
=1/2,对[*]δ>0,由实数的稠密性.在U
0
(1;δ)内既存在有理数x’,又存在无理数x”.因为D(x’)=1,D(x”)=0.从而有 |D(x’)- D(x”)|=|1-0|=1>1/2=ε
0
. (3)存在数列{x
n
}[*]U
0
(x
0
)且[*],无论N>0多么大,都存在n
0
>N,有|f([*])-A|≥ε
0
. 以D(x)为例:已知[*]为无理数,从而对[*]也都是无理数,且有[*]和D(x
2n-1
)=0(n=1,2,…), [*] 综上所述,数列{x
n
}收敛于1,但[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/rfgD777K
0
考研数学二
相关试题推荐
改正下列词语中的错别字题纲
目前语法学界最通行的析句方法有两种,一种是_____,另一种是_____。
我国《合同法》第39条第1款规定:“采用格式条款订立合同的,提供格式条款的一方应当遵循公平原则确定当事人之间的权利和义务。并采取合理的方式提请对方注意免除或者限制其责任的条款,按照对方的要求,对该条款予以说明。”请分析:提供格式条款的一方负有
“倾销”被定义为以低于商品生产成本的价格在另一国销售这种商品的行为。H国的河虾生产者正在以低于M国河虾生产成本的价格,在M国销售河虾。因此H国的河虾生产者正在M国倾销河虾。以下哪一项对评估上文提到的倾销行为是必要的?
顾问:某畅销新闻杂志每年都要公布一个美国大学的排名,上面将美国的大学按照几项标准评判所得综合分数进行排名。然而,学生通常不应以这个综合得分作为决定申请哪些学校的依据。下面哪项如果正确,最有助于证明顾问的建议是正确的?
若m,n是两个不相等的实数,m2=n+2,n2=m+2,则m3-2mn+n3=().
等差数列{an}的第m项am=1/n,第n项an=1/m,且m≠n,则a1+a2+…+amn=().
政府用于支持纯理论研究的投入经常被认为是浪费,似乎只有直接的技术应用可以证明科学的价值。但是,如果没有纯理论研究,应用技术终将成为日渐枯竭的无源之水。今天的纯理论研究可能看来没有什么用,但是谁也说不准某一天它会产生什么样的应用奇迹。这正如人们完全可以问:“
求下列极限
求幂函数的收敛域及和函数.
随机试题
关系模型的特点不包括()
脊髓位于________内,上端在枕骨大孔处连接脑的________;下端成年人约平第________腰椎体下缘。
幼儿对住院反应的主要护理措施,错误的是()
A.凹逆散B.逍遥散C.大柴胡汤D.葛根芩连汤E.小柴胡汤和解少阳,内泻热结的代表方剂是
肉瘤的特点是
A.转移癌B.恶性癌C.交界癌D.癌前病变E.早期癌黑色素瘤属于
效力未定的民事行为的类型包括( )。
下列关于广告主广告部门的职能,说法错误的是()。
2014年7月1日开始实施的《事业单位人事管理条例》指出,对事业单位人员的处分包括:
Thenatureoflightisnotwhollyknown,butitisgenerallybelievedtobematter,asinits(1)______,itobeysthelaws(2)____
最新回复
(
0
)