首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
试分别按函数极限的 (1)定义; (2)柯西准则; (3)归结原则, 写出f(x)在x→x0时极限不存在”的正确陈述,行以狄利克雷函数:为例说明x→1时D(x)的极限不存在.
试分别按函数极限的 (1)定义; (2)柯西准则; (3)归结原则, 写出f(x)在x→x0时极限不存在”的正确陈述,行以狄利克雷函数:为例说明x→1时D(x)的极限不存在.
admin
2022-10-31
16
问题
试分别按函数极限的
(1)定义;
(2)柯西准则;
(3)归结原则,
写出f(x)在x→x
0
时极限不存在”的正确陈述,行以狄利克雷函数:
为例说明x→1时D(x)的极限不存在.
选项
答案
(1)对[*]A∈R,[*]ε
0
>0.对无论多么小的δ>0.总有x’∈U
0
(x
0
,δ).使得|f(x’)-A|≥ε
0
. 以D(x)为例:若A≠1,则ε
0
=[*],对[*]δ>0.由实数的稠密性,[*]有理数x’∈U
0
(1;δ),使得D(x’)=1,从而有 |D(x’)-A|=|1-A|≥[*]=ε
0
. 若A=1.则取ε
0
=1/2,对[*]δ>0,由实数的稠密性,[*]无理数x”∈U
0
(1;δ),使得D(x”)=0.从而有 |D(x”)-A|=|D(x”)-1|-1>1/2=ε
0
. (2)[*]ε
0
>0,对无论多么小的δ>0,总存在x’,x”∈U
0
(x
0
;δ),使得|f(x’)-f(x”)|≥ε
0
. 以D(x)为例:取ε
0
=1/2,对[*]δ>0,由实数的稠密性.在U
0
(1;δ)内既存在有理数x’,又存在无理数x”.因为D(x’)=1,D(x”)=0.从而有 |D(x’)- D(x”)|=|1-0|=1>1/2=ε
0
. (3)存在数列{x
n
}[*]U
0
(x
0
)且[*],无论N>0多么大,都存在n
0
>N,有|f([*])-A|≥ε
0
. 以D(x)为例:已知[*]为无理数,从而对[*]也都是无理数,且有[*]和D(x
2n-1
)=0(n=1,2,…), [*] 综上所述,数列{x
n
}收敛于1,但[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/rfgD777K
0
考研数学二
相关试题推荐
据清代全唐诗及相关资料统计,唐代诗人大约有3700名,他们所创的诗歌有()。
儒家经典《论语》记述了孔子的言行,共多少篇?()
学者们已经证明:效率与公平是对矛盾统一体。实现共同富裕需要经历若干阶段性过程,不可能一蹴而就,但我们又不能不在每一个阶段为实现共同富裕做具体的准备。以下哪项从上述题干中推出最为恰当?
医学实验已经证明在药物支持下的戒烟治疗方法具有明显的成效。巴塞罗那一家医院的三位医生试图尝试另一种完全不依赖于药物,通过逐步减少吸烟数量来达到戒烟目的的治疗方法。他们对111名烟龄基本相同的戒烟者进行了分组研究,第一组61人接受了在药物支持下的戒烟治疗,而
等差数列{an}的前m项和为20,前3m项和为150,则它的前2m项和为().
历史证明,民族兴旺、国家发展的关键因素是国民素质的提高。因此,实现我国宏伟发展目标的关键措施是进一步增加教育投入。上述断定基于以下哪项假设?Ⅰ.教育事业的发展是提高国民素质的重要条件。Ⅱ.增加教育投入是发展教育事业的重要条件。Ⅲ.我
圆O的方程是x2+y2=1,动点P(n,m)在圆O上运动,则的最大值为().
已知定点A(0,1),点B在直线l:x+y=0上运动,当线段AB最短时,点B的坐标是()。
设x1=1,xn+1=,n=1,2,….证明数列{xn}收敛,并求xn.
A、发散B、条件收敛C、绝对收敛D、敛散性与k的取值有关C
随机试题
A.皮肤真菌病和神经性皮炎B.脑缺血C.妇科炎症及不孕症D.急性扁桃体炎E.便秘青蒿的现代应用是
肠痈瘀滞证内服方宜选
营养性缺铁性贫血选用下列哪项治疗最恰当
项目管理过程组中的规划过程内容包括()。
一年中至少会发生几次日食?()
下列成语体现了事物普遍联系观点的是()。
于2007年2月1日之前实施的国家信息安全标准是______。
下列描述正确的是()。
Whatdoesthemanwant?
Fiona’sanxietyaboutherhusbandmadeheratoo_______visitoratthelawyer’soffice.
最新回复
(
0
)