首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
职业资格
教学设计。阅读下述材料回答问题。 在学习了等比数列前n项和公式后,数学老师李老师给大家留了一道思考题:“你能把无限循环小数化成分数吗?你用的什么方法,用具体的例子说明。”李老师将这个问题留作作业,让大家写一个小的总结。有的同学表示,第一次做这样的作业,没有
教学设计。阅读下述材料回答问题。 在学习了等比数列前n项和公式后,数学老师李老师给大家留了一道思考题:“你能把无限循环小数化成分数吗?你用的什么方法,用具体的例子说明。”李老师将这个问题留作作业,让大家写一个小的总结。有的同学表示,第一次做这样的作业,没有
admin
2018-06-07
39
问题
教学设计。阅读下述材料回答问题。
在学习了等比数列前n项和公式后,数学老师李老师给大家留了一道思考题:“你能把无限循环小数化成分数吗?你用的什么方法,用具体的例子说明。”李老师将这个问题留作作业,让大家写一个小的总结。有的同学表示,第一次做这样的作业,没有具体的题目,不知道如何下手。还有的同学觉得老师留的问题不够具体,不知道写到什么程度。
问题:
李老师在批阅了大家的作业后,要针对学生的作答情况在课堂上做一个总结,请以“把无限循环小数化成分数”为教学内容帮李老师设计一个教学片段。
选项
答案
教学片段 师:大家的作业我看了,大部分同学做得很好,下面我们一起来看一下这个问题。把无限循环小数化成分数,我没有给出具体哪个无限不循环小数,大家看到题首先要思考,什么样的小数是无限循环小数,它是怎么化成分数的。那么什么样的小数是无限循环小数呢? 生:小数点后有重复出现的数字。 师:不够严谨,应该是从小数点后某一位开始不断地重复出现前一个或一节数码的十进制无限小数。比如:0.3333…,0.142857142857142857…,0.7,0.753等等。 师:很多同学解决这个问题的时候想到了我们刚刚学过的等比数列前n项和公式,能利用这个知识来解决问题。要表扬大家,很棒。下面我请一位同学说一下用这种方法的思路。小贾,你来说。 小贾:我是求的0.7这个数的分数形式,我把这个循环小数看成了一些小数的和,它可以是 0.7=0,7+0.07+0.007+0.0007+…=7×0.1+7×0.01+7×0.001+7×0.0001+… =7×(0.1+0.01+0.001+0.0001+…), 后边就变成了等比数列前n项求和了,这个等比数列的首项是0.1,公比是0.1,那么0.1+0.01+0.001+0.0001+… [*] 师:很好,思路很清晰。把隐藏在循环小数里的等比数列求和问题挖掘出来,有一部分同学是这么做的。整个过程中运用了化归转化思想,极限思想。 师:我看到,还有一些同学有其他解法。小马,你来说说你的做法。 小马:我是求的[*]这个数的分数形式。设[*]=x,即x=0.555…,则10x=5.555…,所以10x一x=5,得x=[*]。 即,[*]。 师:这个方法不错,我随便写一个循环小数你能把它化成分数吗?来,算算[*]的分数形式。大家用小马刚才说的做法也试着算算。 小马:老师,我就现场算吧。设[*]=x,也就是x=0.753753753…,则1000x=753.753753753…,所以1000x—x=753,得 [*] 师:看来你对这种做法已经很熟悉了。大家发现没有,这个方法的巧妙之处在于把重复的小数分别消去了!怎么消去的呢? 生:把原来的数扩大了。 师:扩大了多少倍。 生:…… 师:其实这种做法也是和等比数列有关的,小马在求[*]的分数形式的时候是将原来的数扩大了10倍,而求[*]的分数形式的时候是将原来的数扩大了1000倍。这其中有什么道理吗? 小马:[*]=0.5+0.05+0.005+0.0005+…=5×0.1+5×0.01+5×0.001+5×0.0001+…=5×(0.1+0.01+0.001+0.0001+…),对应的等比数列的公比是0.1,所以在计算[*]的分数形式的时候是将原来的扩大了10倍。[*]对应的那个等比数列的公比是0.001,所以在计算的时候将原来的扩大了1000倍。 (大部分学生都明白其中的道理了) 师:很好,大家都明白了吧。我现在想问大家,把原来的数扩大多少倍后再和原来的式子作差,这种方法我们接触过吗? (预设)个别学生:刚刚就见过。在推导等比数列前n项和的时候就是这么推导的。前两天刚讲过,叫错位相减法。 师:很好!看来有的同学发现了,这就是在推导等比数列前n项和时用到的错位相减法。 师:小贾同学的做法是把循环小数转化成等比数列求和问题,再利用等比数列前n项和公式直接计算。小马同学的做法是巧妙地利用循环小数本身的特点,用错位相减法解决了问题。两种办法都很好,大家要把这两种方法都学会。这个问题我们课堂上就讨论这两种方法,同学课下再相互交流一下还有没有其他的做法。
解析
转载请注明原文地址:https://kaotiyun.com/show/rwtv777K
本试题收录于:
数学学科知识与教学能力题库教师资格分类
0
数学学科知识与教学能力
教师资格
相关试题推荐
阅读下列材料,根据要求完成教学设计。特殊的保护特殊的爱凡未满18周岁的公民都是未成年人。未成年人代表着祖国的未来、民族的希望,肩负着实现中华民族伟大复兴的历史重任。然而,未成年人的生理、心理都不成熟,没有经济实力,缺乏自我保护能力。党和国家对我们未成年
一般而言,在宏观经济出现通货膨胀时,政府会出台措施降低通货膨胀率,但这会以降低经济增长率和提高失业率为代价。这说明,政府宏观调控在协调“三率”的关系时应当()。
借助网络传播的迅捷性、互动性、高效性,网络募捐可以使受助人在最短的时间内得到救助,摆脱困境,感受到爱心的温暖和慈善的力量。但另一方面,因缺乏对善款使用和余款流向的监管,让人们对慈善募捐的公信力产生怀疑。因此,网络慈善事业的健康发展需要()。①克服
阅读材料,并回答问题。材料:某教师在教学过程中善于使用案例教学法,能够选取恰当的人物和事件作为教学案例,来帮助学生理解知识,让学生形成对良好德行的认同。在讲授《同样的权利,同样的爱护》一课时,该教师选取了生活中的许多案例,比如“中老年人热衷于跳广场舞”“
公民死亡后,民事权利能力消失,但仍受保护的权利包括()。①名誉权②对作品的署名权③生命健康权④财产所有权
有关专家指出,人们应该改变传统观念,大数据之“大”不在于数量之“大”,更多的意义在于人类能够通过对大数据的整合和分析创造新的价值,带来“大知识”“大科技”和“大发展”。上述材料表明()。①人们能把握大数据与新价值之间的有利联系②观念的创新实现了
储蓄存款、股票、债券和保险等为投资者提供了多样的投资品种和选择空间。以下投资方式,既可以更好地规避风险又尽可能使自己的资金保值增值的是()。①对各类产品在收益和风险之间理性权衡后再投资②为获取高收益将主要资金投人流通性强的股票市场③将资金按合
设M为3×3实数矩阵,α为M的实特征值λ的特征向量,则下列叙述正确的是().
设函数f(x)=x+aln(1+x)+bxsinx,g(x)=kx3,若f(x)与g(x)在x→0是等价无穷小,求a,b,k的值。
当x→x0时,与x—x0是等价无穷小的为()。
随机试题
1995年9月1日施行的新中国成立以来我国制定的第一部教育基本法是()。
刑法分则某条规定:犯甲罪的,处3年以下有期徒刑,并处或单处罚金。根据刑法有关规定,下列哪些判决可能是正确的?
[2006年,第25题]两瓶不同类的理想气体,其分子平均平动动能相等,但它们单位体积内的分子数不相同,则这两种气体的温度和压强关系为()。
【2011—4】题11~15:某圆形办公室,半径为5m,吊顶高3.3m,采用格栅式荧光灯嵌入顶棚布置成三条光带,平面布置如图所示,请回答下列问题,并列出解答过程。若该办公室的工作面距地面高0.75m,则该办公室的室空间比为下列哪一项数值?
下列关于比较研究法的说法,正确的有( )。
下列选项中不属于隐性课程的特点的是()。
管理者设置有效的控制系统应满足的条件是()。
依照《村民委员会组织法》的规定,村民委员会对()。
两辆汽车同时从AB两站相对开出,在B侧距中点20km处,两车相遇,继续以原速前进,到达对方出发站后又立即返回,两车再在距A站160km处第二次相遇,则A、B两站的距离为()。
A"scientistic"viewoflanguagewasdominantamongphilosophersandlinguistswhoaffectedtodevelopascientificanalysisof
最新回复
(
0
)