首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
职业资格
教学设计。阅读下述材料回答问题。 在学习了等比数列前n项和公式后,数学老师李老师给大家留了一道思考题:“你能把无限循环小数化成分数吗?你用的什么方法,用具体的例子说明。”李老师将这个问题留作作业,让大家写一个小的总结。有的同学表示,第一次做这样的作业,没有
教学设计。阅读下述材料回答问题。 在学习了等比数列前n项和公式后,数学老师李老师给大家留了一道思考题:“你能把无限循环小数化成分数吗?你用的什么方法,用具体的例子说明。”李老师将这个问题留作作业,让大家写一个小的总结。有的同学表示,第一次做这样的作业,没有
admin
2018-06-07
48
问题
教学设计。阅读下述材料回答问题。
在学习了等比数列前n项和公式后,数学老师李老师给大家留了一道思考题:“你能把无限循环小数化成分数吗?你用的什么方法,用具体的例子说明。”李老师将这个问题留作作业,让大家写一个小的总结。有的同学表示,第一次做这样的作业,没有具体的题目,不知道如何下手。还有的同学觉得老师留的问题不够具体,不知道写到什么程度。
问题:
李老师在批阅了大家的作业后,要针对学生的作答情况在课堂上做一个总结,请以“把无限循环小数化成分数”为教学内容帮李老师设计一个教学片段。
选项
答案
教学片段 师:大家的作业我看了,大部分同学做得很好,下面我们一起来看一下这个问题。把无限循环小数化成分数,我没有给出具体哪个无限不循环小数,大家看到题首先要思考,什么样的小数是无限循环小数,它是怎么化成分数的。那么什么样的小数是无限循环小数呢? 生:小数点后有重复出现的数字。 师:不够严谨,应该是从小数点后某一位开始不断地重复出现前一个或一节数码的十进制无限小数。比如:0.3333…,0.142857142857142857…,0.7,0.753等等。 师:很多同学解决这个问题的时候想到了我们刚刚学过的等比数列前n项和公式,能利用这个知识来解决问题。要表扬大家,很棒。下面我请一位同学说一下用这种方法的思路。小贾,你来说。 小贾:我是求的0.7这个数的分数形式,我把这个循环小数看成了一些小数的和,它可以是 0.7=0,7+0.07+0.007+0.0007+…=7×0.1+7×0.01+7×0.001+7×0.0001+… =7×(0.1+0.01+0.001+0.0001+…), 后边就变成了等比数列前n项求和了,这个等比数列的首项是0.1,公比是0.1,那么0.1+0.01+0.001+0.0001+… [*] 师:很好,思路很清晰。把隐藏在循环小数里的等比数列求和问题挖掘出来,有一部分同学是这么做的。整个过程中运用了化归转化思想,极限思想。 师:我看到,还有一些同学有其他解法。小马,你来说说你的做法。 小马:我是求的[*]这个数的分数形式。设[*]=x,即x=0.555…,则10x=5.555…,所以10x一x=5,得x=[*]。 即,[*]。 师:这个方法不错,我随便写一个循环小数你能把它化成分数吗?来,算算[*]的分数形式。大家用小马刚才说的做法也试着算算。 小马:老师,我就现场算吧。设[*]=x,也就是x=0.753753753…,则1000x=753.753753753…,所以1000x—x=753,得 [*] 师:看来你对这种做法已经很熟悉了。大家发现没有,这个方法的巧妙之处在于把重复的小数分别消去了!怎么消去的呢? 生:把原来的数扩大了。 师:扩大了多少倍。 生:…… 师:其实这种做法也是和等比数列有关的,小马在求[*]的分数形式的时候是将原来的数扩大了10倍,而求[*]的分数形式的时候是将原来的数扩大了1000倍。这其中有什么道理吗? 小马:[*]=0.5+0.05+0.005+0.0005+…=5×0.1+5×0.01+5×0.001+5×0.0001+…=5×(0.1+0.01+0.001+0.0001+…),对应的等比数列的公比是0.1,所以在计算[*]的分数形式的时候是将原来的扩大了10倍。[*]对应的那个等比数列的公比是0.001,所以在计算的时候将原来的扩大了1000倍。 (大部分学生都明白其中的道理了) 师:很好,大家都明白了吧。我现在想问大家,把原来的数扩大多少倍后再和原来的式子作差,这种方法我们接触过吗? (预设)个别学生:刚刚就见过。在推导等比数列前n项和的时候就是这么推导的。前两天刚讲过,叫错位相减法。 师:很好!看来有的同学发现了,这就是在推导等比数列前n项和时用到的错位相减法。 师:小贾同学的做法是把循环小数转化成等比数列求和问题,再利用等比数列前n项和公式直接计算。小马同学的做法是巧妙地利用循环小数本身的特点,用错位相减法解决了问题。两种办法都很好,大家要把这两种方法都学会。这个问题我们课堂上就讨论这两种方法,同学课下再相互交流一下还有没有其他的做法。
解析
转载请注明原文地址:https://kaotiyun.com/show/rwtv777K
本试题收录于:
数学学科知识与教学能力题库教师资格分类
0
数学学科知识与教学能力
教师资格
相关试题推荐
人们常用横纵坐标来形象地描述初中思想品德课程内容的逻辑关系,即初中思想品德课程以心理健康、道德、法律和国情教育为横坐标,以自我认识、我与他人和集体、我与国家和社会为纵坐标,以此来概述内容的逻辑性。请运用思想品德课程理念的相关知识,简要说明上述逻辑体系的合
中国航天人积极践行中华民族精神,攻坚克难、无私奉献,取得了举世瞩目的成就。这直接说明中华民族精神()。
以下是《弘扬和培育民族精神》一课的教学设计。请阅读材料,回答问题。(一)民族精神,生生不息1.民族文化的精髓提问:你认为“中国的脊梁”是什么?列举对中华民族做出巨大贡献的人物及其伟大的民族精神。例如:不甘屈服、奋起反抗的普通民众,边陲的解放军战士,人
中学生楚某自从结交了几个游手好闲的社会青年后,逐渐变得不思进取,经常逃学旷课,迷恋网络游戏。经学校多次教育,他仍不思悔改,受到了学校的纪律处分。毕业后,他进一步发展到敲诈勒索一些中学生的地步,甚至盗窃财物、参与赌博,最终被人民法院判刑。简要分析楚某走上
某老师在讲授“国际关系及其决定性因素”这一部分内容时,设计了以下板书:请运用思想政治课程的教学理论,评析以上板书。
材料:下面是某高中政治老师的《思想政治课课堂教学评价表》。问题:请根据思想政治课程教学评价的相关理念,说一说该评价表存在哪些不足。
1902年奥地利科学家发明了廉价、清洁、方便和耐用的塑料袋,广泛应用于社会生活各个方面,被誉为科技界的“白色革命”。在2002年塑料袋“百岁诞辰”之时,它因对生态环境的严重污染和破坏而被环保组织评为“20世纪人类最糟糕的发明”。现今,“远离塑料袋”“禁用塑
宁波一餐厅推出机器人送餐服务,新奇的创意既减少了服务人员的数量和费用支出,又吸引了许多市民前来体验。可见()。①该餐厅推出的机器人送餐服务能提高商品的价值②新奇的创意有利于更好地实现商品的价值③机器人代替服务人员有利于
设a、b为实数,0<0<b,证明在开区间(a,b)中存在有理数(提示取<b—a)。
设A为三阶矩阵,将A的第二行加到第一行得B,再将B的第一行的-1倍加到第二列得C,记,则()
随机试题
求2xy’+2xy2=x的通解.
A.抗HBsB.HBcAgC.DNA多聚酶D.抗HBeE.HBeAg血清乙肝标志物的意义是:存在于受感染的肝细胞核内,不游离存在于血清中
常用的抗心律失常药物不包括
新生儿化脓性脑膜炎,以下哪项临床表现不符
下列选项中,测绘资质审批机关应当降低资质或者核减相应业务范围的是()。
受压构件两端铰支,其临界力为50kN,若将构件改为两端固定,则其临界力为()kN。
飞机发生索赔时,承保人应根据申请和现场勘察情况及检验人员提供的全部资料进行研究,然后决定索赔是否成立。具体而言,保险人要弄清的情况有()。
【2014河南洛阳】学生在学习中表现出来的观察力、注意力、想象力等能力属于心理健康考察范围指标中的()。
Easterfallsofficiallyonthe______SundayafterthefullmoonofMarch.
【B1】【B7】
最新回复
(
0
)