首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有向量组(I):α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,-1,a+2)T 和 向量组(Ⅱ):β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T. 试问:当a为何值时,向量组(I)与(Ⅱ)等价?当a为何值
设有向量组(I):α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,-1,a+2)T 和 向量组(Ⅱ):β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T. 试问:当a为何值时,向量组(I)与(Ⅱ)等价?当a为何值
admin
2014-05-19
34
问题
设有向量组(I):α
1
=(1,0,2)
T
,α
2
=(1,1,3)
T
,α
3
=(1,-1,a+2)
T
和
向量组(Ⅱ):β
1
=(1,2,a+3)
T
,β
2
=(2,1,a+6)
T
,β
3
=(2,1,a+4)
T
.
试问:当a为何值时,向量组(I)与(Ⅱ)等价?当a为何值时,向量组(I)与(Ⅱ)不等价?
选项
答案
对(α
1
,α
2
,α
3
丨β
1
,β
2
,β
3
作初等行变换,有 (α
1
,α
2
,α
3
丨β
1
,β
2
,β
3
)=[*] [*] (1)当a≠-1时,行列式丨α
1
,α
2
,α
3
丨=a+1≠0,由克莱姆法则,知三个线性方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=β
i
(i=1,2,3)均有唯一解.所以,β
1
,β
2
,β
3
可由向量组(I)线性表出. 由于行列式 丨β
1
,β
2
,β
3
丨=[*] 故对Va,方程组x
1
β
1
+x
2
β
2
+x
3
β
3
=α
j
(j=1,2,3)均有唯一解.所以,β
1
,β
2
,β
3
可由向量组(I)线性表出.恒有唯一解,即β
1
,β
2
,β
3
总可由向量组(Ⅱ)线 性表出. 因此,当a≠-1时,向量组(I)与(Ⅱ)等价. (2)当a=-1时,有 [*] 由于秩r(α
1
,α
2
,α
3
)≠r(α
1
,α
2
,α
3
,β
1
),线性方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=β
1
无解,故向量β
1
不能由α
1
,α
2
,α
3
线性表示.因此,向量组(I)与(Ⅱ)不等价.
解析
所谓向量组(I)与(II)等价,即向量组(I)与(Ⅱ)可以互相线性表出.若方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=β有解,即β可以由α
1
,α
2
,α
3
线性表出.若对同一个a,三个方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=β
i
(i=1,2,3)均有解,即向量组(II)可以由(I)线性表出.
转载请注明原文地址:https://kaotiyun.com/show/s2U4777K
0
考研数学三
相关试题推荐
十八大报告政治指出:毛泽东第一代领导人为中国特色社会主义作出的主要贡献是()
党的先进性同党的纯洁性相辅相成、密不可分。具体体现在
里约奥组委于2014年12月23日公布了2016年里约奥运会和残奥会吉祥物。受巴西植物启发,两个吉祥物分别代表了巴西的动物和植物,体现出桑巴国度的热情与奔放。吉祥物的设计过程表明()
据新华社2022年5月19日报道,今年国家继续在部分主产区实行小麦和稻谷最低收购价政策,小麦、早籼稻、中晚籼稻、粳稻最低收购价格水平()。国家粮食和储备局19日发布信息称,夏粮以()为主,约占全年产量1/4,预计旺季
“资本主义社会必然要转变为社会主义社会这个结论,马克思完全是从现代社会的经济的运动规律得出的。”这一规律表现在()。
设f(x,y)在区域D上连续,(xo,yo)是D的一个内点,Dr是以(xo,yo)为中心以r为半径的闭圆盘,试求极限
求由下列方程所确定的隐函数y=y(x)的导数dy/dx:(1)y=1-xey;(2)xy=ex+y;(3)xy=yx;(4)y=1+xsiny.
利用等价无穷小的代换性质,求下列极限:
设随机变量X服从正态分布N(μ1,σ12),随机变量y服从正态分布N(μ2,σ22),且P{|X-μ1|<1}>P{|Y-μ2|<1},则必有().
命题①f(x),g(x)在xn点的某邻域内都无界,则f(x),g(x)在xn点的该邻域内一定无界;②limf(x)=∞,limg(x)=∞,则lim[f(x)g(x)]=∞;③f(x)及g(x)在xn点的某邻域内均有界,则f(x),g(x)在xo的该邻域内
随机试题
设函数f(x)在[0,a]上连续,且f(x)+f(a―x)≠0,x∈[0,a],则
简述邻联甲苯胺比色法测定余氯的步骤。
临床诊疗的道德原则不包括
期货合同纠纷案件中,当事人在合同中所约定的()的违约责任承担方式无效。
资料一威远公司早期是C国一家IT金融服务企业。最近几年,由于IT金融行业的竞争愈演愈烈,威远公司在IT金融服务业中的利润空间不断收窄,面临着很大的压力。2010年,威远公司总经理王涛开始为公司寻找转型的出路。一次他到国外旅游,在下榻的酒店中
锲而舍之,朽木不折;锲而不舍,________________。(荀子《劝学》)
()是唯一一位同时获得普利策奖和诺贝尔文学奖的作家。
决定社会必要劳动时间的因素有()。
积分=___________.
PASSAGEONEWhatkindofcustomerswouldeatattherestaurantontheoppositesideofthestreet?
最新回复
(
0
)