首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
职业资格
教学内容:人教版七年级数学上册第96页中的片段: 下面的框图表示了解这个方程的流程: 根据上述提供的教学内容,完成下列任务: 类比法是数学教学中一种重要的教学方法,请你结合学生学习“解一元一次方程”的经验,设计一个“解一元一次不等式”的教学片段。
教学内容:人教版七年级数学上册第96页中的片段: 下面的框图表示了解这个方程的流程: 根据上述提供的教学内容,完成下列任务: 类比法是数学教学中一种重要的教学方法,请你结合学生学习“解一元一次方程”的经验,设计一个“解一元一次不等式”的教学片段。
admin
2018-05-10
61
问题
教学内容:人教版七年级数学上册第96页中的片段:
下面的框图表示了解这个方程的流程:
根据上述提供的教学内容,完成下列任务:
类比法是数学教学中一种重要的教学方法,请你结合学生学习“解一元一次方程”的经验,设计一个“解一元一次不等式”的教学片段。
选项
答案
“解一元一次不等式”的教学片段设计 (一)创设问题情境,引入新课 师:同学们,我们学过一篇课文《锯是怎样发明的》,你们知道为什么鲁班会发明锯吗?他受到了怎样的启发? 师:这种方法就是数学中常说的“类比思想”,今天这节课我想和大家一起去感受类比思想带给我们的启发。 (二)温故而知新 1.什么叫一元一次方程?解一元一次方程的基本步骤是什么? 只含有一个未知数,未知数的指数是一次,这样的方程叫作一元一次方程。 基本步骤是: a.去分母;b。去括号;c.移项;d.合并同类项;e.系数化为1。 观察下列不等式: (1)2x一2.5≥15, (2)x≤8.75, (3)x>4, (4)5+3x>240, 这些不等式有什么共同特征? (只含有一个未知数,未知数的最高次数是一次,都是整式) 师:大家给它们取个什么名字呢? 2.一元一次不等式的定义 归纳:只含有一个未知数,未知数的最高次数是一次,这样的不等式叫一元一次不等式。 师:下面我们来判断下列不等式是不是一元一次不等式。请大家讨论。 小黑板出示: 下列不等式是一元一次不等式吗? (1)2x一2.5≥15, (2)5+3x>240. (3)x<一4, (4)[*] (5)x
2
>0。 (1)(2)(3)中的不等式是一元一次不等式,(4)(5)不是。 师:好,从上面的讨论中,我们可以得出判断一元一次不等式的条件有三个,即未知数的个数,未知数的次数,且不等式的两边都是整式。请大家理解一元一次不等式的定义。 3.类比探索一元一次不等式的解法。 (1)比一比 口答 ①x的2倍等于6,求x; ②x的2倍小于6,求x。 (2)练习 板演 ①x的2倍加1等于x的5倍加10,求x;②的2倍加1不小于x的5倍加10,求x。 (3)试一试 指名板演 ①解方程:3一x=2x+6 ②解不等式3一x<2x+6 学生讨论:解一元一次不等式和解一元一次方程的方法、步骤。 4.再探解一元一次不等式的一般步骤: 例:解不等式[*],并把它的解集在数轴上表示出来。 解:去分母,得3(x一2)≥2(7一x) 去括号,得3x一6≥14一2x 移项,合并同类项,得5x≥20 两边都除以5.得x≥4 这个不等式的解集在数轴上表示如下: [*] 5.解一元一次不等式与解一元一次方程的区别与联系。 利用解一元一次方程与解一元一次不等式的方法、步骤都类似的结论,一起完成下面的表格(小黑板出示): [*] 看来大家已经对解一元一次不等式的步骤掌握得很好了,请大家判断以下解法是否正确。若不正确,请改正。(小黑板出示) 解不等式:[*]≥5 解:去分母,得一2x+1≥一15 移项、合并同类项,得一2x≥一16 两边同时除以一2,的x≥8 学生回答,教师重点强调: 区别: (1)不等式两边都乘以(或除以)同一个负数时,不等号的方向改变;而方程两边乘以(或除以)同一个负数时,等号不变。 (2)一元一次不等式有无限多个解,而一元一次方程只有一个解。 (三)课堂练习 解下列不等式,并把它们的解集分别表示在数轴上: (1)5x>一10, (2)一3x+12≤0, [*] 指名板演,学生评价,教师点评。 (四)课时小结 本节课学习了如下内容: (1)一元一次不等式的定义 (2)一元一次不等式的解法 (3)解一元一次不等式与解一元一次方程的区别与联系(运用类比思想) (五)课后作业(略)
解析
转载请注明原文地址:https://kaotiyun.com/show/s8tv777K
本试题收录于:
数学学科知识与教学能力题库教师资格分类
0
数学学科知识与教学能力
教师资格
相关试题推荐
唐卡作为悬挂供奉的宗教卷轴画,是藏族文化中一种独具特色的绘画艺术形式。如今,在藏族居民家中,随处可觅唐卡的身影。信教群众家中普遍设有经堂或佛龛,开展转经、朝佛等活动。这说明()。①国家依法管理宗教事务②公民享有宗教信仰自由的权利③开展宗教活动有利
早在春秋战国时期,扁鹊就提出了“望、闻、问、切”的诊疗方法,奠定了中医临床诊断和治疗的基础。此后,中医药在不断汲取世界文明成果、丰富发展自己的同时,也逐步传播到世界各地。目前,世界卫生组织成员国中已有103个认可使用针灸。这充分说明()。
下面是高中必修教材《生活与哲学》中“整体和部分的辩证关系”课文相关内容,根据内容,设计教学目标,并提出有效达成该目标的三条措施。(1)整体和部分的区别整体是事物的全局和发展的全过程,从数量看它是一;部分是事物的局部和发展的各个阶段,从数量上看它是多。
阅读材料,回答问题。一位新教师面向校内上公开课,教学内容是《经济生活》中的“依法纳税”。在分析“依法纳税是公民义务”时,列举了很多生活中存在的违反税法的现象,然后又设计了一个情景剧,让学生上台表演,探究学生如何以主人翁的意识关注国家对税收的征管。一名同学
某教师开展课堂演讲活动,让同学们分成5组,为每一位演讲者打分,最后结合老师自己的评价,综合判定每位演讲者的分数。该教师在实施教学评价时注意到了()。
当下,我国很多地方摊贩经营非常活跃,但存在经营不规范现象。有的地方以建立固定经营场所的方式给小贩提供经营空间,加强市场管理,规范摊贩的经营行为。促进这类个体经济的发展有利于()。①实现按劳分配的收入分配原则②扩大政府调控范围③解决低收人群体
马克思主义哲学的产生实现了哲学史上的伟大变革,它第一次实现了()。①唯物主义与辩证法的有机统一②唯物辩证的自然观与唯物辩证的历史观的有机统一③世界观和方法论的统一④实践基础上的科学性和革命性的统一
设A(x1,y1),t),B(x2,y2),C(x3,y3)为平面上不共线的三点,则三角形ABC的面积为()。
(1)设,抛物线y=x2一2过点(t,t2一2)的切线与x轴的交点为(g(t),0),求g(t).(2)定义数列{xn}如下:x0=2,xn+1=g(xn),n=0,1,2,…证明:(上述求方程根的近似值的方法称为牛顿切线法)
求极限
随机试题
美国:墨西哥
患者于某,女性,58岁。两年前曾患“中风”,经治已愈,之后逐渐出现善忘呆滞,言语模糊不清,行为古怪孤僻,时哭时笑,诊见两目黯晦,舌黯,脉细涩。若病人日久兼气血不足应
第一个用于临床的磺酰脲类降糖药结构上属于低聚糖药物,可竞争性地抑制葡萄糖苷酶
大中型药品零售企业的质量负责人药品零售连锁门店的质量管理负责人
在项目生命周期中,融资服务需要解决的问题涉及()
某项目总投资为2000万元,分3年均衡发放,第一年投资500万元,第二年投资1000万元,第三年投资500万元,建设期内年利率为10%,则建设期贷款利息共计( )万元。
根据下面材料,回答下列题目:假定1年期零息债券面值为100元,现价为94.34元,而2年期零息债券现价为84.99元。某投资者考虑购买2年期每年付息的债券,面值为100元,年息票利率为12%。2年期零息债券的到期收益率是______;2年期有息债券的
下列不属于操作风险损失事件收集工作应坚持的原则的是()。
体育锻炼课是我国中小学最普遍、最有保障的一种课余体育活动形式。
What%theword"saying"(Line1,Para1)inthispassagemean?Whichindustrydoeshisfriendengagein?
最新回复
(
0
)