首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)在(-∞,+∞)内二次可导,令F(χ)= 求常数A,B,C的值使函数F(χ)在(-∞,+∞)内二次可导.
设f(χ)在(-∞,+∞)内二次可导,令F(χ)= 求常数A,B,C的值使函数F(χ)在(-∞,+∞)内二次可导.
admin
2016-10-21
33
问题
设f(χ)在(-∞,+∞)内二次可导,令F(χ)=
求常数A,B,C的值使函数F(χ)在(-∞,+∞)内二次可导.
选项
答案
对任何常数A,B,C,由F(χ)的定义及题设可知F(χ)分别在(-∞,χ
0
],(χ
0
,+∞)连续,分别在(-∞,χ
0
),(χ
0
,+∞)二次可导.从而,为使F(χ)在(-∞,+∞)二次可导,首先要使F(χ)在χ=χ
0
右连续,由于F(χ
0
-0)=F(χ
0
)=f(χ
0
),F(χ
0
+0)=C,故 F(χ)在(-∞,+∞)连续得C=f(χ
0
). 在C=f(χ
0
)的情况下,F(χ)可改写成 [*] 故F(χ)在(-∞,+∞)可导[*]B=f′(χ
0
). 在C=f(χ
0
),B=f′(χ
0
)的情况下,F(χ)可改写成 [*] 故F(χ)在(-∞,+∞)内二次可导[*]2A=f〞(χ
0
)[*]f〞(χ
0
). 综合得,当A=[*]f(χ
0
),B=f′(χ
0
),C=f(χ
0
)时F(χ)在(-∞,+∞)上二次可导.
解析
转载请注明原文地址:https://kaotiyun.com/show/sPt4777K
0
考研数学二
相关试题推荐
e1/3
设f(x),g(x)在区间[-a,a](a>0)上连续,g(x)为偶函数,且f(x)满足条件f(x)+f(-x)=A(A为常数)利用上一小题的结论计算定积分.
设f(x),g(x)在区间[-a,a](a>0)上连续,g(x)为偶函数,且f(x)满足条件f(x)+f(-x)=A(A为常数)证明:∫-aaf(x)g(x)dx=A∫0ag(x)dx
已知一抛物线通过x轴上的两点A(1,0),B(3,0).计算上述两个平面图形绕x轴旋转一周所产生的两个旋转体体积之比。
设函数f(x)在[a,b]上具有连续的二阶导数,证明:在(a,b)内存在一点ξ,使得∫abf(x)dx=(b-a)(b-a)3f"(ξ)①
设f(x)在[0,1]上二阶可导,且f(0)=f(1)=0.证明:存在ξ∈(0,1),使得f"(ξ)=2f’(ξ)/(1-ξ).
设y1,y2是二阶常系数线性齐次方程y"+p(x)y’+q(x)y=0的两个特解,则由y1(x)与y2(x)能构成该方程的通解,其充分条件是________。
设三阶实对称矩阵A的特征值是1,2,3;矩阵A的属于特征值1,2的特征向量分别是α1=(-1,-1,1)T,α2=(1,-2,-1)T.求A的属于特征值3的特征向量.
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2-α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
设函数f(x)在[a,+∞)内二阶可导且f’’(x)a,f’(b)>0,f’(b)0,则方程f(x)=0在[a,+∞)内有且仅有一个实根.
随机试题
血浆清除率
朦胧状态的特点,下列哪项是错误的
A.主动——被动型B.指导——合作型C.指导——参与型D.共同——参与型E.主动——主动型护患进行沟通的理想距离是()
客户需要委托他人办理下达指令,调拨资金等事项的,应当在期货经纪合同中指定委托人及明确其受托权限。()
某国有企业2013年境内所得1200万元,境外所得(均为税后所得)有三笔,其中来自甲国有两笔所得,分别为120万元和51万元,税率分别为40%和15%,来自乙国所得42.5万元,已纳税7.5万元(甲国、乙国均与我国签订了避免重复征税的税收协定)。则2013
根据企业所得税法律制度的规定,下列各项所得中,按照负担、支付所得的企业或机构、场所所在地确定所得来源地的是()。
某教师进行高一男生的跨栏跑教学,单元为6次课。第1次课,采用游戏法让学生跨越不同形状、不同高度的障碍物,充分体验跨越障碍的乐趣。第2~4次课,在教学中,让学生按运动水平分成人数相等的4个小组,自定目标(如不同的栏数、栏间距、栏高等),并向各自的目标挑战;在
消费者监督权是指消费者享有对商品和服务以及保护消费者权益的工作进行监督的权利。根据上述定义,下列属于行使消费者监督权的行为是:
Veryyoungchildrenwithnoreadingexperiencemayastoundtheirparentswiththefirstwordstheyread,suchasadepartmentsto
______youropinionsareworthconsidering,thecommitteefindsitunwisetoplacetoomuchimportanceonthem.
最新回复
(
0
)