首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)在(-∞,+∞)内二次可导,令F(χ)= 求常数A,B,C的值使函数F(χ)在(-∞,+∞)内二次可导.
设f(χ)在(-∞,+∞)内二次可导,令F(χ)= 求常数A,B,C的值使函数F(χ)在(-∞,+∞)内二次可导.
admin
2016-10-21
53
问题
设f(χ)在(-∞,+∞)内二次可导,令F(χ)=
求常数A,B,C的值使函数F(χ)在(-∞,+∞)内二次可导.
选项
答案
对任何常数A,B,C,由F(χ)的定义及题设可知F(χ)分别在(-∞,χ
0
],(χ
0
,+∞)连续,分别在(-∞,χ
0
),(χ
0
,+∞)二次可导.从而,为使F(χ)在(-∞,+∞)二次可导,首先要使F(χ)在χ=χ
0
右连续,由于F(χ
0
-0)=F(χ
0
)=f(χ
0
),F(χ
0
+0)=C,故 F(χ)在(-∞,+∞)连续得C=f(χ
0
). 在C=f(χ
0
)的情况下,F(χ)可改写成 [*] 故F(χ)在(-∞,+∞)可导[*]B=f′(χ
0
). 在C=f(χ
0
),B=f′(χ
0
)的情况下,F(χ)可改写成 [*] 故F(χ)在(-∞,+∞)内二次可导[*]2A=f〞(χ
0
)[*]f〞(χ
0
). 综合得,当A=[*]f(χ
0
),B=f′(χ
0
),C=f(χ
0
)时F(χ)在(-∞,+∞)上二次可导.
解析
转载请注明原文地址:https://kaotiyun.com/show/sPt4777K
0
考研数学二
相关试题推荐
4/π
设函数f(x,y)、g(x,y)在有界区域D上连续,且g(x,y)≥0,试证必存在点(ε,η)∈D,使
设函数f(u)在(0,+∞)内具有二阶导数,且z=满足等式验证
设D={(x,y)|x2+y2≤,x≥0,y≥0},[1+x2+y2]表示不超过1+x2+y2的最大整数,计算二重积分xy[1+x2+y2]dxdy.
计算二重积分x2ydxdy,其中D是由双曲线x2-y2=1及直线y=0,y=1所围成的平面区域。
微生物培养的增殖速率和它们现有的量及现有的营养物质的乘积成正比(比例系数为k),营养物质减少的速率和微生物的现有量成正比(比例系数为k1),实验开始时,容器内有x。g微生物和y。g营养物质,试求微生物的量及营养物质的量随时间的变化规律,并问何时微生物停止增
设A为n阶可逆矩阵,则下列结论正确的是().
设(X,Y)为连续型随机向量,已知X的密度函数fX(x)及对一切x,在X=x的条件下Y的条件密度fY|X(y|x).求:(1)密度函数f(x,y);(2)Y的密度函数fY(y);(3)条件密度函数fX|Y(x|y).
设n阶矩阵A非奇异(n≥2),A*是A的伴随矩阵,则
随机试题
Itwasasummerevening.Iwassittingbytheopenwindow,readinga【C1】________Suddenly,Iheardsomeonecrying,"Help!Help!
用于控制疟疾症状的最佳抗疟药是
最可能的诊断是假如CT检查发现患者为脑叶出血,血肿超过40ml,患者颅压增高症状明显加重,处于浅昏迷状态,应首选下列何项措施
A.左下6B.右上5C.右上1D.右上ⅣE.左上Ⅲ左上乳尖牙
患者,女,35岁。月经周期正常,惟月经量少、色红、质稠,经期鼻衄,量不多,色暗红,伴手足心热,潮热颧红,舌红少苔,脉细数。其证候是
资产组合M的期望收益率为18%,标准离差为27.9%;资产组合N的期望收益率为13%,标准离差率为1.2。投资者张某和赵某决定将其个人资金投资于资产组合M和N中,张某期望的最低收益率为16%,赵某投资于资产组合M和N的资金比例分别为30%和70%。
建设工程的屋面防水工程、有防水要求的卫生间、房间和外墙面的防渗漏,最低保修期限为()年。
8,17,24,37,()
《民法典》规定:“物权的种类和内容,由法律规定。”对此,下列说法中正确的是()
Thatshewas(i)_____rockclimbingdidnotdiminishher(ii)_____tojoinherfriendsonarock-climbingexpedition.
最新回复
(
0
)