设A为n阶方阵,且A2=A,证明:若A的秩为r<n,则A—E的秩为n一r,其中E是n阶单位矩阵.

admin2016-07-11  42

问题 设A为n阶方阵,且A2=A,证明:若A的秩为r<n,则A—E的秩为n一r,其中E是n阶单位矩阵.

选项

答案因为A2=A,所以A(A—E)=0.A的秩为r<n,则Ax=0的解空间的维数为n—r,而A—E的列向量都是Ax=0的解,于是A—E的列向量极大无关组中向量的个数≤n一r,即r(A—E)≤n一r,所以r+r(A—E)≤n,所以r(A)+r(A—E)≤n, 又因为r(A)+r(A—E)=r(A)+r(E—A)≥r(A+E—A)=r(E)=n. 所以,r(A)+r(A—E)=n,所以r(A—E)=n一r.

解析
转载请注明原文地址:https://kaotiyun.com/show/slyR777K
0

最新回复(0)