首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上连续,且f’’(x)>0,对任意的x1,x2∈[a,b]及0<λ<1,证明: f[λx1+(1-λ)x2]≤λf(x1)+(1-λ)f(x2).
设f(x)在[a,b]上连续,且f’’(x)>0,对任意的x1,x2∈[a,b]及0<λ<1,证明: f[λx1+(1-λ)x2]≤λf(x1)+(1-λ)f(x2).
admin
2018-05-25
45
问题
设f(x)在[a,b]上连续,且f’’(x)>0,对任意的x
1
,x
2
∈[a,b]及0<λ<1,证明: f[λx
1
+(1-λ)x
2
]≤λf(x
1
)+(1-λ)f(x
2
).
选项
答案
令x
0
=λx
1
+(1-λ)x
2
,则x
0
∈[a,b],由泰勒公式得f(x)=f(x
0
)+f’(x
0
)(x-x
0
)+[*](x-x
0
)
2
,其中ξ介于x
0
与x之间, 因为f’’(x)>0,所以f(x)≥f(x
0
)+f’(x
0
)(x-x
0
), 于是 [*] 两式相加,得f[λx
1
+(1一λ)x
2
]≤λf(x
1
)+(1一λ)f(x
2
).
解析
转载请注明原文地址:https://kaotiyun.com/show/t7X4777K
0
考研数学三
相关试题推荐
设f(x)连续,f(0)=1,则曲线∫0xf(x)dx在(0,0)处的切线方程是__________.
设f(x)在x0处n阶可导,且f(m)(x0)=0(m-1,2,…,n-1),f(n)(x0)≠0(n≥2).证明:(1)当n为偶数且f(n)(x0)<0时,f(x)在x0处取得极大值;(2)当n为偶数且f(n)(x0)>>0时,f(x)在x0处取得极
试分析下列各个结论是函数z=f(x,y)在点P0(x0,y0)处可微的充分条件还是必要条件.(1)二元函数的极限存在;(2)二元函数z=f(x,y)在点(x0,y0)的某个邻域内有界;(3)(4)F(x)=f(x0,y0)在点x0处可微,G(y)=
设幂级数在x=0处收敛,在x=2b处发散,求幂级数的收敛半径R与收敛域,并分别求幂级数的收敛半径.
函数f(x)=展开为(x-1)的幂级数,则其收敛半径R等于()
设φ(x)是以2π为周期的连续函数,且φˊ(x)=φ(x),φ(0)=0.(1)求方程yˊ+ysinx=φ(x)ecosx的通解;(2)方程是否有以2π为周期的解?若有,请写出所需条件;若没有,请说明理由.
设m和n为正整数,a>0,且为常数,则下列说法不正确的是()
设随机变量X的分布函数为F(x)=A+Barctanx,-∞<x<+∞.求:(1)系数A与B;(2)P{-1<X≤1};(3)X的概率密度.
某考生想借张宇编著的《张宇高等数学18讲》,决定到三个图书馆去借,对每一个图书馆而言,有无这本书的概率相等;若有,能否借到的概率也相等,假设这三个图书馆采购、出借图书相互独立,求该生能借到此书的概率.
设求A和A一1+E的特征值.
随机试题
A.寒证化热B.热证转寒C.实证转虚D.因虚致实咳嗽吐痰,息粗而喘,久之气短而喘,声低懒言者,证属
铁剂治疗营养性缺铁性贫血,血红蛋白达正常后继续用药的时间是
下列哪些药物是预防急性GVHD的主要药物
A.等渗性脱水B.低渗性脱水C.高渗性脱水D.高镁血症E.高钙血症
病人乔某,18岁,因急性白血病而行骨髓移植术。对该病人应采取哪种隔离措施()
下列选项中,属于苏霍姆林斯基的教育观点的是()。
李某为公司仓库保管员。某日,两歹徒为逼李某交出仓库钥匙而持刀追打李某,李某被打成重伤,无奈之中李某抢了路边正在停车的黄某的摩托车逃走,李某抢摩托车的行为()。
简述什么是物质滥用,并对其危害进行举例。【湖南师范大学2015】
Thisplay,______,isverywonderful;therearemanyinterestingcharactersinit.
Aspirinisoneofthesafestandmosteffectivedragsinventedbyman.Themostpopularmedicineintheworldtoday,itisanef
最新回复
(
0
)