首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(u,υ)具有连续偏导数,且fu’(u,υ)+fυ’(u,υ)=sin(12+υ)eu+υ,求y(x)=e—2xf(x,x)所满足的一阶微分方程,并求其通解。
设f(u,υ)具有连续偏导数,且fu’(u,υ)+fυ’(u,υ)=sin(12+υ)eu+υ,求y(x)=e—2xf(x,x)所满足的一阶微分方程,并求其通解。
admin
2017-12-29
70
问题
设f(u,υ)具有连续偏导数,且f
u
’
(u,υ)+f
υ
’
(u,υ)=sin(12+υ)e
u+υ
,求y(x)=e
—2x
f(x,x)所满足的一阶微分方程,并求其通解。
选项
答案
由y(x)=e
2x
f(x,x),有 y’(x)=一2e
—2x
f(x,x)+e
—2x
[f
1
’
(x,x)+f
2
’
(x,x)], 由f
u
’
(u,υ)+f
υ
’
(u,υ)=sin(u+υ)e
u+υ
可得 f
1
’
(x,x)+f
2
’
(x,x)=(sin2x)e
2x
。 于是y(x)满足一阶线性微分方程 y’(x)+2y(x)=sin2x。 通解为 y(x)=e
—2x
[∫sin2x.e
2x
dx+C], 由分部积分公式,可得 ∫sin2x.e
2x
dx=[*](sin2x—cos2x)e
2x
, 所以 y(x)=[*](sin2x—cos2x)+Ce
—2x
。
解析
转载请注明原文地址:https://kaotiyun.com/show/tGX4777K
0
考研数学三
相关试题推荐
若f(x)在x0点至少二阶可导,且=-1,则函数f(x)在x=x0处()
一个罐子里装有黑球和白球,黑、白球数之比为a:1。现有放回的一个接一个地抽球,直至抽到黑球为止,记X为所抽到的白球个数.这样做了n次以后,获得一组样本:X1,X2,…,Xn。基于此,求未知参数a的矩估计和最大似然估计.
设ξ,n是相互独立且服从同一分布的两个随机变量,已知ξ的分布律为,i=1,2,3,又设X=max{ξ,η),Y=min{ξ,η),试写出二维随机变量(X,Y)的分布律及边缘分布律,并求P{ξ,η}.
设随机变量X与y相互独立,且X~N(0,1),Y~B(n,p)(0<p<1),则X+Y的分布函数()
f(x)在[0,1]上连续,(0,1)内可导,且f(1)=.证明:至少存在一点ξ∈(0,1),使f’(ξ)=(1一ξ-1)f(ξ).
求下列积分:
证明:f(x,y)=Ax2+2Bxy+Cy2在约束条件g(x,y)=下有最大值和最小值,且它们是方程k2一(Aa2+Cb2)k+(AC—B2)a2b2=0的根.
求数项级数的和.
设k>0,讨论常数k的取值,使f(x)=xlnx+k在其定义域内没有零点、有一个零点及两个零点.
设f(x)=sinx,f[φ(x)]=1一x2,则φ(x)=_________,定义域为__________.
随机试题
礼、乐、射、御、书、数是我国()的教育内容。
______、______、______、______应计入材料采购成本。
在校园网中,可对防火墙进行设置,使校外某一IP地址不能直接访问校内网站。()
疟疾的凶险发作是由下列哪种疟原虫引起的
关于证明责任,下列哪些说法是正确的?
计算机会计核算系统属于计算机应用软件。()
在旅游活动中,导游对游客称谓总的原则应把握三点,即()。
压力蒸气灭菌后的无菌物品,其有效保存期是()。
山感恩地,方成其高峻;海感恩溪,方成其博大。“感恩”是出于真诚恳切地对别人的帮助表示感谢,但感恩,并不止于此。当一个人经常说“感恩”的时候,他的生活便少了一分抱怨,多了分珍惜。请以“感恩”为话题,写一篇作文,题目自拟,角度自选,体裁不限,600字
A、Hehastopickuphistoolkits.B、Hehastotakeabushome.C、Hehastoopenhisstoreinthemorning.D、Hehastopickuph
最新回复
(
0
)