求微分方程x2y’’一2xy’+2y=2x一1的通解.

admin2021-11-15  3

问题 求微分方程x2y’’一2xy+2y=2x一1的通解.

选项

答案令x=et,则x2y’’=[*]+2y=2et一1,[*]+2y=0的通解为y=C1et+C2e2t,令[*]+2y=2et的特解为y0(t)=atet,代入[*]+2y=一1的特解为y=[*]+2y=2et一1的通解为y=C1et+C2e2t一2tet一[*],原方程的通解为y=C1x+C2x2一2xlnx一[*].

解析
转载请注明原文地址:https://kaotiyun.com/show/tWl4777K
0

最新回复(0)