首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设φ(x)具有一阶连续的导数,φ(0)=1,并设 [y2+xy+φ(x)y]dx+[φ(x)+2y]dy=0 为全微分方程,求φ(x)及此全微分方程的通解.
设φ(x)具有一阶连续的导数,φ(0)=1,并设 [y2+xy+φ(x)y]dx+[φ(x)+2y]dy=0 为全微分方程,求φ(x)及此全微分方程的通解.
admin
2020-04-02
45
问题
设φ(x)具有一阶连续的导数,φ(0)=1,并设
[y
2
+xy+φ(x)y]dx+[φ(x)+2y]dy=0
为全微分方程,求φ(x)及此全微分方程的通解.
选项
答案
由全微分方程的充要条件得φ(x)满足 [*] 即 φ′(x)-φ(x)=x 解得[*] 再由φ(0)=1可得C=2,从而 φ(x)=-x-1+2e
-x
因此,所给全微分方程为 (y
2
-y+2ye
x
)dx+(2xy-x-1+2e
x
)dy=0 又 (y
2
-y+2ye
2
)dx+(2xy-x-1+2e
x
)dy =(y
2
dx+2xydy)-(ydx+xdy)+2(ye
x
dx+e
x
dy)-dy =d(xy
2
-xy+2ye
x
-y) 故所求通解为 xy
2
-xy+2ye
x
-y=C
解析
转载请注明原文地址:https://kaotiyun.com/show/ZpS4777K
0
考研数学一
相关试题推荐
设A为m×n矩阵.证明:对任意m维列向量b,非齐次线性方程组Ax=b恒有解的充分必要条件是r(A)=m.
(1993年)求微分方程x2y’+xy=y2满足初始条件的特解·
设向量组α1=(1,2,1)T,α2=(1,3,2)T,α3=(1,a,3)T为R3的一个基,β=(1,1,1)T,在这组基下的坐标为(b,c,1)T.求a,b,c.
设A=α1,α2,α3为三阶矩阵,若α1,α2线性无关,且α3=—α1+2α2,则线性方程组Ax=0的通解为________.
幂级数在(0,+∞)内的和函数S(x)=________.
连续型随机变量X的分布函数F(x)=,则其中的常数a和b为()
设有一批同型号产品,其次品率为p。现有五位检验员分别从中随机抽取n件产品,检测后的次品数分别为1,2,2,3,2。在情况2下,检验员从该批次产品中再随机检测100个样品,试用中心极限定理近似计算其次品数大于3的概率(注:Φ()=0.76)。
设A,B,C三个事件两两独立,则A,B,C相互独立的充分必要条件是()
[2014年]设α1,α2,α3是三维向量,则对任意常数k,l,向量α1+kα3,α2+lα3线性无关是向量α1,α2,α3线性无关的().
[2011年]微分方程y’+y=e-xcosx满足条件y(0)=0的解为y=______.
随机试题
青春期与围绝经期功血治疗原则的不同点是()
酚妥拉明是
Justtellmewhatsubjectyou’dlikemeto______sothatIcouldgetsomenotesready.
开展党的群众路线教育实践活动的主要任务是聚焦到()上。
整个人类社会都离不开警察,原始社会以及将来的共产主义社会都会有警察的存在。( )
歌德评价帕格尼尼“在琴弦上展现了火一样的灵魂”。巴黎人为他的琴声陶醉,忘记了当时正在流行的霍乱。在维也纳,一个盲人听到他的琴声,以为是一个乐队在演奏,当得知这只是一个叫帕格尼尼的意大利人用一把小提琴奏出的声音时,盲人大叫一声:“这是个魔鬼!”这段文
英国每日邮报报道.在前往Azasskava洞穴的探险中,参与者发现了雪人的脚印,以及各种雪人用来表示他占领领地的标记——折断的树枝,另外在位于克麦罗沃地区某洞穴发现了灰色“头发”样本。据此.俄罗斯当局宣称雪人正生活在西伯利亚。下列哪项如果为真,最能质疑俄罗
ThereisasubstantialbodyofevidenceshowingthatHIVcausesAIDS—andthatantiretroviraltreatment(ART)hasturnedtheviral
在OSI七层协议中,_____________充当了翻译官的角色,确保一个数据对象能在网络中的计算机间以双方协商的格式进行准确的数据转换和加解密。
Themantowhomwehandedtheformspointedoutthattheyhadnotbeen______filledin.
最新回复
(
0
)