首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)在[1,2]上连续,在(1,2)内可导,证明:存在ξ∈(1,2),使得ξf′(ξ)-f(ξ)=f(2)-2f(1).
设f(χ)在[1,2]上连续,在(1,2)内可导,证明:存在ξ∈(1,2),使得ξf′(ξ)-f(ξ)=f(2)-2f(1).
admin
2018-05-17
52
问题
设f(χ)在[1,2]上连续,在(1,2)内可导,证明:存在ξ∈(1,2),使得ξf′(ξ)-f(ξ)=f(2)-2f(1).
选项
答案
令φ(χ)=[*], 则φ(χ)在[1,2]上连续,在(1,2)内可导,且φ(1)=φ(2)=f(2)-f(1), 由罗尔定理,存在ξ∈(1,2),使得φ′(ξ)=0, 而φ′(χ)=[*],故ξf′(ξ)-f(ξ)=f(2)-2f(1).
解析
转载请注明原文地址:https://kaotiyun.com/show/tfk4777K
0
考研数学二
相关试题推荐
A、 B、 C、 D、 D
利用求复合函数偏导的方法,得[*]
求曲线x3-xy+y3=1(x≥0,y≥0)上的点到坐标原点的最长距离与最短距离.
设函数f(x)在[a,b]上有定义,在开区间(a,b)内可导,则().
设函数f(x)在[0,1]上连续,(0,1)内可导,且3∫2/31f(x)dx=f(x),证明在(0,1)内存在一点,使f’(C)=0.
方程yy’’=1+y’2满足初始条件y(0)=1,y’(0)=0的通解为__________.
如下图,连续函数y=f(x)在区间[-3,-2],[2,3]上图形分别是直径为1的上、下半圆周,在区间[-2,0],[0,2]上的图形分别是直径为2的上、下半圆周.设F(x)=∫0xf(t)dt,则下列结论正确的是().
曲线y=(1/x)+ln(1+ex),渐近线的条数为().
设f(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,且f’(a)>0,证明:存在ξ∈(a,b),使得f’’(a)<0.
(2006年试题,15)试确定常数A,B,C的值,使得e2(1+Bx+Cx2)=1+Ax+D(x2)其中o(x3)是当x→0时比x3高阶的无穷小.
随机试题
游客发生高原反应的症状有()。
被告人何某,男21岁。某日,深夜约11点钟,在某胡同拐角处,何某藏身阴暗处准备持刀抢劫。忽然看见一对谈恋爱的青年男女走过来,女子背着包,胡某即准备实施抢劫。当这对青年走近时,何某从旁边跳起,手持尖刀逼对方交出皮包。对方未作反抗,把皮包放在地上。何某让两被害
《备急千金要方》的作者是
目前临床上多巴胺用于
铁路隧道围岩的特性主要包括()。
某房地产开发公司(增值税一般纳税人)于2017年1月受让一宗土地使用权,依据受让合同支付政府部门地价款7000万元(已取得相关部门的财政票据),当月办妥土地使用证并支付相关税费。自2017年2月起至2018年2月末,该房地产开发公司在受让土地上开发建造一
将教育评价的结果作为决定升留级、分班编组、选择教程及指导职业定向的依据。这体现了教育评价的()。
Mothersinterferewiththeirchildren’slivesevenmorethanmostoffspringrealize.Thattheynagabouteatinghabitsiswellk
母亲不反对婚姻自由,但很注重爱情的专一。
"Learned"wordsarefromthemoreformativeconversationofhighlyeducatedspeakerswhoarediscussingsomeparticulartopics.
最新回复
(
0
)