首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
职业资格
案例: 为了帮助学生理解正方形的概念、性质,发展学生推理能力、几何直观能力等,一节习题课上,甲、乙两位教师各设计了一道典型例题. 【教师甲】 如图1,在边长为a的正方形ABCD中,E为AD边上一点(不同于A、D),连CE.在该正方形边上选取点F,连接DF,
案例: 为了帮助学生理解正方形的概念、性质,发展学生推理能力、几何直观能力等,一节习题课上,甲、乙两位教师各设计了一道典型例题. 【教师甲】 如图1,在边长为a的正方形ABCD中,E为AD边上一点(不同于A、D),连CE.在该正方形边上选取点F,连接DF,
admin
2018-03-29
42
问题
案例:
为了帮助学生理解正方形的概念、性质,发展学生推理能力、几何直观能力等,一节习题课上,甲、乙两位教师各设计了一道典型例题.
【教师甲】
如图1,在边长为a的正方形ABCD中,E为AD边上一点(不同于A、D),连CE.在该正方形边上选取点F,连接DF,使DF=CE.请解答下面的问题:
(1)满足条件的线段DF有几条?
(2)根据(1)的结论,分别判断DF与CE的位置关系,并加以证明.
【教师乙】
如图2,在边长为a的正方形ABCD中,E、F分别为AD、AB边上的点(点E、F均不与正方
形顶点重合),且AE=BF,CE、DF相交于点M.证明:
(1)DF=CE;
(2)DF⊥CE。
问题:
直接写出教师甲的例题中两个问题的结论(不必证明);
选项
答案
满足条件的线段DF有两条。 当F在BC边上时,DF与CE相交;当F在AB边上时,DF⊥CE. 证明:∵四边形ABCD是正方形∴AD=CD.∠CDE=∠DAF.∵DF=CE.∴△ADF≌△DCE.∴∠ADF=∠DCE∵∠DCE+∠CDF=90°∴ADF+∠CED=90°即DF⊥CE.
解析
转载请注明原文地址:https://kaotiyun.com/show/tttv777K
本试题收录于:
数学学科知识与教学能力题库教师资格分类
0
数学学科知识与教学能力
教师资格
相关试题推荐
近年来,我国大面积雾霾天气时有发生,对此,专家认为当前的雾霾治理,不同地区应协同推进,应警惕“大城市中心主义”,不能忽视小城市和农村地区。其中蕴涵的哲理是()。①坚持了系统优化的方法②两点论与重点论的统一③矛盾主次要方面的统一④坚持理论与实践的统
近年来,我国大面积雾霾天气时有发生。对此,专家认为当前的雾霾治理,不同地区应协同推进,应警惕“大城市中心主义”,不能忽视了小城市和农村地区。其中蕴涵的哲理是()。①坚持了系统优化的方法②两点论与重点论的统一③矛盾主次要方面的统一④坚持理论与实践
某村开展集体资产确权到户和股份合作制改革,实现了农村“资源变资产、资金变股金、农民变股东”。在立足供需对接的基础上,发展了农村集体经济,赢得了农民的高度认可。材料表明,发展农村经济应()。①不断完善农村生产关系②以市场为导向优化农业产业结构③不断
2019年1月1日,新的个人所得税法全面实施。新个税法的亮点主要有较大幅度地提高起征点;大幅扩大1—3级应税所得额的级距;增加子女教育、大病医疗等专项附加扣除。下列能正确反映新个税法实施产生的影响的是()。①扩大较低档税率级距——减轻
中学生身心的基本特征不包括()。
设函数,则f’(x)的零点个数为().
若f(x)为(—l,l)内的可导奇函数,则f’(x)()。
向量是近代数学中重要和基本的数学概念之一,下面是高中必修课程数学4“平面向量”第一章第一节“平面向量的实际背景及基本概念”的部分教材内容。阅读教材,回答下列问题:(1)谈谈“向量”在高中数学课程中的作用;(2)分析上
袋中有5个黑球,3个白球,大小相同,一次随机地摸出4个球,其中恰有3个白球的概率为()。
下列命题正确的是()。
随机试题
下列选项不是法人客户财务状况分析方法的是()。
涂装的施工方法有哪些?怎样选择?
很可能引起氟中毒的氟摄入阈值是
估计出血量此时最合适处理是纠正休克的同时给
A.二乙氨基乙醇B.碱性亚硝基铁氰化钠试液C.二氧化锰D.过氧化氢试液E.硫酸铜试液
下列不属于信用贷款特点的是()。
下列不属于实物资产清查范围的是()。
简述岗前培训的特点和意义。
法律只能适用于生效后发生的事件和行为,不能适用于生效前发生的事件和行为。()
在因特网中,一般采用的网络管理模型是______。
最新回复
(
0
)