首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知三元二次型χTAχ的平方项系数都为0,α=(1,2,-1)T满足Aα=2α. ①求χTAχ的表达式. ②求作正交变换χ=Qy,把χTAχ化为标准二次型.
已知三元二次型χTAχ的平方项系数都为0,α=(1,2,-1)T满足Aα=2α. ①求χTAχ的表达式. ②求作正交变换χ=Qy,把χTAχ化为标准二次型.
admin
2017-11-21
50
问题
已知三元二次型χ
T
Aχ的平方项系数都为0,α=(1,2,-1)
T
满足Aα=2α.
①求χ
T
Aχ的表达式.
②求作正交变换χ=Qy,把χ
T
Aχ化为标准二次型.
选项
答案
①设A=[*]则条件Aα=2α即 [*] 得2a-b=2,a-c=4,b+2c=-2,解出a=b=2,c=-2. 此二次型为4χ
1
χ
2
+4χ
1
χ
3
-4χ
2
χ
3
. ②先求A特征值 |λE-A|=[*]=(λ-2)
2
(λ+4). 于是A的特征值就是2,2,-4. 再求单位正交特征向量组 属于2的特征向量是(A-2E)χ=0的非零解. [*] 得(A-2E)χ=0的同解方程组:χ
1
-χ
2
-χ
3
=0. 显然β
1
=(1,1,0)
T
是一个解,设第二个解为β
2
=(1,-1,c)
T
代入方程得c=2,得到属于特征值2的两个正交的特征向量β
1
,β
2
.再把它们单位 化: 记η
1
=β
1
/‖β
1
‖=[*]β
1
,η
2
=β
2
/‖β
2
‖=[*]β
2
. 属于-4的特征向量是(A+4E)χ=0的非零解. 求出β
3
=(1,-1,-1)
T
是一个解,单位化: 记η
3
=β
3
/‖β
3
‖=[*]β
3
则η
1
,η
2
,η
3
是A的单位正交特征向量组,特征值依次为2,2,-4. 作正交矩阵Q=(η
1
,η
2
,η
3
),则Q
-1
AQ是对角矩阵,对角线上的元素为2,2,-4. 作正交变换χ=Qy,它把f(χ
1
,χ
2
,χ
3
)化为2y
1
2
+2y
2
2
-4y
3
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/u4bD777K
0
考研数学二
相关试题推荐
诉讼标的:是指当事人争议的要求人民法院通过审判予以解决的某一民事法律关系或权利。根据上述定义,下列属于诉讼标的的是()。
行政确认:指行政机关依法对行政管理的相对人的法律地位、权利义务或有关法律事实进行审核、鉴别、给予确认、认定、证明并予以宣告的具体行政行为。根据上述定义,下列属于行政确认的是()。
给定资料1.2017年中央一号文件是新世纪以来指导“三农”工作的第14个中央一号文件。这份题为《中共中央国务院关于深入推进农业供给侧结构性改革加快培育农业农村发展新动能的若干意见》的文件,首次提出“田园综合体”概念,指出“支持有条件的乡村建设以农民合
计算二重积分[cosx2siny2+sin(x+y)]dσ,其中D={(x,y)|x2+y2≤a2,常数a>0}.
设α(χ)=ln(1+t)dt,β(χ)=χ5+7χ7,γ(χ)=arctanχ-arcsinχ,当χ→0时,按照前面一个比后面一个为高阶无穷小的排列次序为()
计算二重积分xarctanydxdy,其中积分区域D是由抛物线y=x2和圆x2+y2=2及x轴在第一象限所围成的平面区域。
设函数f(χ)在(0,+∞)内可导,f(χ)>0,,且(Ⅰ)求f(χ);(Ⅱ)定义数列χn=∫0nπf(t)dt,证明数列{χn}收敛.
下列反常积分中收敛的是
随机试题
最先发现生态系统营养级之间的能量传递效率约为10%的科学家是()
A.昏迷B.痴呆C.木僵D.情感淡漠E.抑郁下列表现最可能的症状为做事缺乏兴趣,反应迟缓,自责自罪,整日呆坐
拔牙创血块开始机化的时间为
甲有两个儿子(乙、丙)和一个女儿(丁)。甲死亡,乙在为甲办完丧事以后,便将甲遗留的房屋卖给邻居赵某。丙从外地回来后,向法院起诉,要求继承遗产。法院受理后,丁正好也从外地赶来,要求参加诉讼,与其兄长一起继承遗产。请问:丁在诉讼中的地位应当是:()
管道单段长度不宜超过150m的有()。
原始记账凭证不得外借,其他单位如因特殊原因需要使用原始凭证时,经本单位领导批准后,方可外借。()
天光云影共徘徊:《观书有感》:朱熹
二氧化碳:温室效应
Thestudyofgeneticshasgivenrisetoaprofitablenewindustrycalledbiotechnology.Asthename【C1】______,itcombinesbiolo
Silveristhebestconductorofelectricity,copper______itclosely.
最新回复
(
0
)