首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知三元二次型χTAχ的平方项系数都为0,α=(1,2,-1)T满足Aα=2α. ①求χTAχ的表达式. ②求作正交变换χ=Qy,把χTAχ化为标准二次型.
已知三元二次型χTAχ的平方项系数都为0,α=(1,2,-1)T满足Aα=2α. ①求χTAχ的表达式. ②求作正交变换χ=Qy,把χTAχ化为标准二次型.
admin
2017-11-21
53
问题
已知三元二次型χ
T
Aχ的平方项系数都为0,α=(1,2,-1)
T
满足Aα=2α.
①求χ
T
Aχ的表达式.
②求作正交变换χ=Qy,把χ
T
Aχ化为标准二次型.
选项
答案
①设A=[*]则条件Aα=2α即 [*] 得2a-b=2,a-c=4,b+2c=-2,解出a=b=2,c=-2. 此二次型为4χ
1
χ
2
+4χ
1
χ
3
-4χ
2
χ
3
. ②先求A特征值 |λE-A|=[*]=(λ-2)
2
(λ+4). 于是A的特征值就是2,2,-4. 再求单位正交特征向量组 属于2的特征向量是(A-2E)χ=0的非零解. [*] 得(A-2E)χ=0的同解方程组:χ
1
-χ
2
-χ
3
=0. 显然β
1
=(1,1,0)
T
是一个解,设第二个解为β
2
=(1,-1,c)
T
代入方程得c=2,得到属于特征值2的两个正交的特征向量β
1
,β
2
.再把它们单位 化: 记η
1
=β
1
/‖β
1
‖=[*]β
1
,η
2
=β
2
/‖β
2
‖=[*]β
2
. 属于-4的特征向量是(A+4E)χ=0的非零解. 求出β
3
=(1,-1,-1)
T
是一个解,单位化: 记η
3
=β
3
/‖β
3
‖=[*]β
3
则η
1
,η
2
,η
3
是A的单位正交特征向量组,特征值依次为2,2,-4. 作正交矩阵Q=(η
1
,η
2
,η
3
),则Q
-1
AQ是对角矩阵,对角线上的元素为2,2,-4. 作正交变换χ=Qy,它把f(χ
1
,χ
2
,χ
3
)化为2y
1
2
+2y
2
2
-4y
3
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/u4bD777K
0
考研数学二
相关试题推荐
关于基本粒子目前最被认可的理论是“标准理论”。它约在30年前确立,已发现的基本粒子都可以根据这一理沦进行解释。100多年来,质子、中子、电子等基本粒子陆续被发现。面对这些成绩,有人认为,宇宙问的基本粒子被发现得差不多了,即使有,也可以用现有的理论解释,因而
你的两个好朋友因为产生误会而断绝关系,但是那个误会与你有关,你要怎么处理?(2011年7月30日下午云南省玉溪市公务员面试真题)
我国的副省级市是指在不改变现有行政隶属关系的前提下,享有省级计划决策权和经济管理权的城市。下面所列的城市均属于副省级市的是()。
小王参加公务员录用考试被某机关录用,在试用期内因违反公务员纪律被取消录用,小王不服,他可以采取的正确做法是()。
甲、乙、丙三人一共有525张积分卡,甲卡数的2倍和乙的一样多,丙的卡数比甲多25%,乙有多少张积分卡?
设f(x)=+a(a为常数),则
已知广义积分是收敛的,则它的数值()
(Ⅰ)设f(χ)在(a,+∞)可导且f′(χ)=A,求证:若A>0,则f(χ)=+∞;若A<0,则)f(χ)=-∞.(Ⅱ)设g(χ)在[a,+∞)连续,且∫a+∞g(χ)dχ收敛,又g(χ)=1,求证l=0.
下列广义积分收敛的是().
随机试题
直流电机换向极的作用是()。
噪声治理的三个优先级顺序是()。
甲状旁腺素的作用不包括
属于感染性肉芽肿的是
患者,男性,15岁,贫血、乏力,面色苍白,肝脾肿大。血红蛋白70g/L,血片见正常和低色素红细胞及少数中、晚幼粒细胞,红细胞渗透脆性减低,骨髓环状铁粒幼红细胞达45%,其诊断可能为
窦性心律的特点哪项是错误的()
一级护理病人巡视的时间是
下列有关审计证据可靠性的说法,正确的是()。
真理没有阶级性,在真理面前人人平等。这是因为()。
β等于哪个值时表示判断标准既不宽松也不严格?()
最新回复
(
0
)