首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2009年] 计算二重积分(x—y)dxdy,其中D={(x,y)∣(x一1)2+(y一1)2≤2,y≥x).
[2009年] 计算二重积分(x—y)dxdy,其中D={(x,y)∣(x一1)2+(y一1)2≤2,y≥x).
admin
2019-05-10
92
问题
[2009年] 计算二重积分
(x—y)dxdy,其中D={(x,y)∣(x一1)
2
+(y一1)
2
≤2,y≥x).
选项
答案
D为圆域的一部分,可用极坐标系计算.极点可选在圆心上,也可选在点(1,1)上,如用直角坐标计算,则要分区域计算. [*] 解一 设x=rcosθ,y=rsinθ(以原点为极点),由 (x一1)
2
+(y一1)
2
=2得到 x
2
+y
2
=r
2
=2(x+y)=2r(cosθ+sinθ), 即 r=2(cosθ+sinθ), D={(r,θ)∣π/4≤0≤3π/4,0≤r≤2(cosθ+sinθ)}, 则 [*](x—y)dxdy=∫
π/4
3π/4
dθ∫
0
2(sinθ+cosθ)
r(cosθ—sinθ)rdr=∫
π/4
3π/4
[[*](cosθ-sinθ)r
3
∣
0
2(sinθ+cosθ)
]dθ =∫
π/4
3π/4
[*](cosθ一sinθ).(sinθ+cosθ).(sinθ+cosθ)
2
dθ =[*]∫
π/4
3π/4
(sinθ+cosθ)
3
d(sinθ+cosθ) =[*] 解二 设x一1=rcosθ,y一1=rsinθ,则由 (x一1)
2
+(y一1)
2
=r
2
cos
2
θ+r
2
sin
2
θ=r
2
=2, 得到r=√2.由D的图形已看出π/4≤θ≤5π/4,则以圆心(1,1)为极点的积分区域为 D={(r,θ)∣π/4≤0≤5π/4,0≤r≤√2), 因而[*](x—y)dxdy=∫
π/4
5π/4
dθ∫
0
√2
(cosθ一sinθ)rdr=∫
π/4
5π/4
(cosθ一sinθ)[*]r
3
∣
0
√2
dθ =[*]∫
π/4
5π/4
(cosθ一sinθ)dθ=[*]∫
π/4
5π/4
d(sinθ+cosθ) [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/uVV4777K
0
考研数学二
相关试题推荐
设y=y(χ)二阶可导,且y′≠0,χ=χ(y)是y=y(χ)的反函数.(1)将χ=χ(y)所满足的微分方程=0变换为y=y(χ)所满足的微分方程;(2)求变换后的微分方程满足初始条件y(0)=0,y′(0)=的解.
设二阶常系数非齐次线性微分方程y〞+y′+qy=Q(χ)有特解y=3e-4χ+χ2+3χ+2,则Q(χ)=_______,该微分方程的通解为_______.
计算积分
设f(χ)在[0,1]上可导,且|f′(χ)|<M,证明:
求函数y=的间断点,并进行分类.
求微分方程(1-χ2)y〞-χy′=0的满足初始条件y(0)=0,y′(0)=1的特解.
设f(χ)连续可导,f(0)=0,f′(0)≠0,F(χ)=∫0χ(χ2-t2)f(t)dt,且当χ→0时,F′(χ)与χk为同阶无穷小,求k.
设A为三阶矩阵,且有三个互异的正的特征值,设矩阵B=(A*)2-4E的特征值为0,5,32.求A-1的特征值并判断A-1是否可对角化.
[2017年]设二阶可导函数f(x)满足f(1)=f(一1)=1,f(0)=一1,且f"(x)>0,则()
随机试题
设A是三阶矩阵,α1,α2,α3是线性无关的三维列向量,且满足Aα1=-2α1-4α3,Aα2=α1+2α2+α3,Aα3=α1+3α3。求矩阵A的特征值;
以下各选项中,我国《民法通则》没有规定的是()。
关于骨盆底部的解剖错误的是哪项
“阴在内,阳之守也;阳在外,阴之使也。”说明阴阳的关系是
产程中肛查。下列哪项是错误的
组织在内部加强成本控制,在研发、生产、销售、服务等领域内都力图将成本降到最低,从而成为行业的成本领先者的战略是指( )。
导游服务经历的变化包括()。
M公司是NLC化学有限公司在中国的子公司,主要生产、销售医疗药品。随着生产业务的扩大,为了对生产部门的人力资源进行更为有效的管理开发,2014年初始,公司决定在生产部门设立一个新的职位,主要工作是负责生产部与人力资源部的协调工作。部门经理希望从外部招聘合适
在教师的帮助下,小学生通过列提纲、画思维导图等方式进行学习。这种学习策略属于()。
5,7,11,13,()。
最新回复
(
0
)