设f(χ)在[0,1]上连续且满足f(0)=1,f′(χ)-f(χ)=a(χ-1).y=f(χ),χ=0,χ=1,y=0围成的平面区域绕χ轴旋转一周所得的旋转体体积最小,求f(χ).

admin2017-09-15  56

问题 设f(χ)在[0,1]上连续且满足f(0)=1,f′(χ)-f(χ)=a(χ-1).y=f(χ),χ=0,χ=1,y=0围成的平面区域绕χ轴旋转一周所得的旋转体体积最小,求f(χ).

选项

答案由f′(χ)-f(χ)=a(χ-1)得 f(χ)=[a∫(χ-1)e∫-1dχdχ+C]e-∫-dχ=Ceχ-av, 由f(0)=1得C=1,故f(χ)=eχ-aχ. V(a)=[*] 由V′(a)=[*]=0得a=3,因为V〞(a)=[*]>0,所以当a=3时,旋转体的体积最小,故f(χ)=eχ-3χ.

解析
转载请注明原文地址:https://kaotiyun.com/show/1Ek4777K
0

最新回复(0)