首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)是在[a,b]上连续且严格单调的函数,在(a,b)内可导,且f(a)=a<b=f(b).证明:存在ξi∈(a,b)(i=1,2,…,n),使得
设f(x)是在[a,b]上连续且严格单调的函数,在(a,b)内可导,且f(a)=a<b=f(b).证明:存在ξi∈(a,b)(i=1,2,…,n),使得
admin
2016-10-24
48
问题
设f(x)是在[a,b]上连续且严格单调的函数,在(a,b)内可导,且f(a)=a<b=f(b).证明:存在ξ
i
∈(a,b)(i=1,2,…,n),使得
选项
答案
令h=[*],因为f(x)在[a,b]上连续且单调增加,且f(a)=a<b=f(b), 所以f(a)=a<a+h<…<a+(n一1)h<b=f(b),由端点介值定理和函数单调性,存在a<c
1
<c
2
<…<c
n一1
<b,使得 f(c
1
)=a+h,f(c
2
)=a+2h,…,f(c
n一1
)=a+(n一1)h,再由微分中值定理,得 f(c
1
)一f(a)=f’(ξ
1
)(c
1
一a),ξ
1
∈(a,c
1
), f(c
2
)一f(c
1
)=f’(ξ
1
)(c
2
一c
1
),ξ
2
∈(c
1
,c
2
),… f(b)一f(c
n一1
)=f’(ξ
n
)(b一c
n一1
),ξ
n
∈(c
n一1
,b),从而有 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/ubH4777K
0
考研数学三
相关试题推荐
已知函数y=f(x)为一指数函数与一幂函数之积,满足:(2)y=f(x)在(-∞,+∞)内的图形只有一条水平切线与一个拐点,试写出f(x)的一个可能的表达式.
[*]
求下列初值问题的解:(1)yˊ=ylna,y|x=1=2;(2)xyˊ+ey=1,y|x=1=-1n2;(3)xyˊ-ylny=0,y|x=1=e;(4)excosydx+(ex+1)sinydy=0,y|x=0=π/4.
如图2.1所示,y=f(x)和y=g(x)的图形分别是图中的虚线和实线所表示的折线.设F(x)=f[g(x)],求Fˊ(1).
设m,n∈Z+,证明:当x→0时,(1)o(xm)+o(xn)=o(xl),l=min{m,n};(2)o(xm)×o(xn)=o(xm+n);(3)若α是x→0时的无穷小,则αxm=o(xm);(4)o(kxn)=o(xn(k≠0).
设常数a>0,则级数().
设函数f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导存在相等的最大值,又f(a)=g(a),f(b)=g(b),证明:(I)存在η∈(a,b),使得f(η)=g(η);(Ⅱ)存在ξ∈(a,b),使得f〞(ξ)=g〞(ξ).
设f(x,y)为区域D内的函数,则下列各种说法中不正确的是().
求z=x2+12xy+2y2在区域4x2+y2≤25上的最值.
随机试题
事先不设计问卷,表格和提问程序的获得资料的方法是()
A.慢性锰中毒B.急性一氧化碳中毒C.急性有机磷中毒D.慢性苯中毒E.急性甲苯中毒以中枢神经及造血系统损害为主
急性肾炎,下列哪项不正确
患者,女性,62岁。因心脏病住院治疗,遵医嘱服用洋地黄类药物治疗,护士今日在观察患者脉搏时,发现每隔一个正常搏动后出现一次过期前收缩动。该护士考虑患者的异常脉搏为
森林资源的作用和意义在于( )。
水利水电机电设备安装工程专业承包范围中,一级资质标准要求企业注册资本金和净资产分别在( )以上。
在我国的出口业务中,实施法定检验的范围包括()。
政治因素对课程改革的影响包括()
•Readthearticlebelowaboutemploymentsituation,andthequestionsontheoppositepage.•Foreachquestion13--18,markone
Readthearticlebelowaboutbuyingacomputer.ChoosethebestwordtofilleachgapfromA,B,CorD.Foreachquestion(19-3
最新回复
(
0
)