首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知线性方程组 的一个基础解系为(b11,b21,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T,试写出线性方程组 的通解,并说明理由。
已知线性方程组 的一个基础解系为(b11,b21,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T,试写出线性方程组 的通解,并说明理由。
admin
2018-04-08
45
问题
已知线性方程组
的一个基础解系为(b
11
,b
21
,…,b
1,2n
)
T
,(b
21
,b
22
,…,b
2,2n
)
T
,…,(b
n1
,b
n2
,…,b
n,2n
)
T
,试写出线性方程组
的通解,并说明理由。
选项
答案
可记方程组(Ⅰ)A
n×2n
=0,(Ⅱ)B
n×2n
y=0,B
T
的列是(Ⅰ)的基础解系,(Ⅰ),(Ⅱ)的系数矩阵分别记为A,B,由于B的每一行都是A
n×2n
x=0的解,故AB
T
=O。故由基础解系的定义知,B
T
的列向量是线性无关的,因此r(B)=n。从而线性方程组(Ⅱ)的基础解系中含有2n-r(B)=2n-r=n个向量。 对AB
T
=O两边取转置,有(AB
T
)
T
=BA
T
=O,则有A
T
的列向量,即A的行向量是By=0的解。 由于线性方程组(Ⅰ)的基础解系中含有n个向量,可知n=2n-r(A),得r(A)=2n-n=n。因 此,A的行向量线性无关。从而A
T
的列向量是By=0的n个线性无关的解,也即A
T
的列向量是By=0的基础解系。 综上所述,线性方程组(Ⅱ)的通解为k
1
ξ
1
+k
2
ξ
2
+…+k
n
ξ
n
其中, ξ
1
=(a
11
,a
21
,…,a
1,2n
)
T
,ξ
2
=(a
21
,a
22
,…,a
2,2n
)
T
,…,ξ
n
=(a
n1
,a
n2
,…,a
n,2n
)
T
,且k
1
,k
2
,…,k
n
为任意常数。
解析
转载请注明原文地址:https://kaotiyun.com/show/ulr4777K
0
考研数学一
相关试题推荐
已知ξ1,ξ2是方程(λE-A)X=0的两个不同的解向量,则下列向量中必是A的对应于特征值λ的特征向量的是()
设A为n阶非奇异矩阵,α为n维列向量,b为常数.记分块矩阵其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵.计算并化简PQ;
设n阶矩阵A,B等价,则下列说法中,不一定成立的是()
利用变换y=f(ex)求微分方程y’’一(2ex+1)y’+e2xy=e3x的通解.
求y’’一y=e|x|的通解.
求微分方程的通解,并求满足y(1)=0的特解.
设A是s×n矩阵,B是A的前m行构成的m×n矩阵,已知A的行向量组的秩为r.证明:r(B)≥r+m—s.
设随机变量X1,X2,X3,X4相互独立,且都服从正态分布N(0,σ2),如果二阶行列式Y=,则σ2=________。
随机试题
下列属于计算机网络通信设备的是________。
下列脑室引流术后引流管的护理方法不妥的是
从健康传播效果的层次看,以下表述属于健康信念认同的是
A.寒湿阻络B.血脉瘀阻C.湿热毒盛D.热毒伤阴E.气阴两虚脱疽表现为患肢暗红、紫红或青紫,下垂更甚,肌肉萎缩。趺阳脉搏动消失,患肢持久性疼痛,夜间尤甚。其证候是()
A.安全保障权B.自主选择权C.公平交易权D.获得赔偿权甲药品零售企业出售当归短斤缺两,该行为侵犯了消费者的
不符合足月儿外观特点的是
某乐队举办一场演唱会的收入是7000元,乐队的主唱分得其中的25%,另外5名成员平分余下的收入,那么他们每人分得多少元?
人生价值内在地包含了人生的自我价值和社会价值两个方面。自我价值和社会价值两者的关系是()
Mostworthwhilecareersrequiresomekindofspecializedtraining.Ideally,therefore,thechoiceofan【C1】______shouldbemade
Whereisthisannouncementmade?
最新回复
(
0
)