首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知线性方程组 的一个基础解系为(b11,b21,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T,试写出线性方程组 的通解,并说明理由。
已知线性方程组 的一个基础解系为(b11,b21,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T,试写出线性方程组 的通解,并说明理由。
admin
2018-04-08
28
问题
已知线性方程组
的一个基础解系为(b
11
,b
21
,…,b
1,2n
)
T
,(b
21
,b
22
,…,b
2,2n
)
T
,…,(b
n1
,b
n2
,…,b
n,2n
)
T
,试写出线性方程组
的通解,并说明理由。
选项
答案
可记方程组(Ⅰ)A
n×2n
=0,(Ⅱ)B
n×2n
y=0,B
T
的列是(Ⅰ)的基础解系,(Ⅰ),(Ⅱ)的系数矩阵分别记为A,B,由于B的每一行都是A
n×2n
x=0的解,故AB
T
=O。故由基础解系的定义知,B
T
的列向量是线性无关的,因此r(B)=n。从而线性方程组(Ⅱ)的基础解系中含有2n-r(B)=2n-r=n个向量。 对AB
T
=O两边取转置,有(AB
T
)
T
=BA
T
=O,则有A
T
的列向量,即A的行向量是By=0的解。 由于线性方程组(Ⅰ)的基础解系中含有n个向量,可知n=2n-r(A),得r(A)=2n-n=n。因 此,A的行向量线性无关。从而A
T
的列向量是By=0的n个线性无关的解,也即A
T
的列向量是By=0的基础解系。 综上所述,线性方程组(Ⅱ)的通解为k
1
ξ
1
+k
2
ξ
2
+…+k
n
ξ
n
其中, ξ
1
=(a
11
,a
21
,…,a
1,2n
)
T
,ξ
2
=(a
21
,a
22
,…,a
2,2n
)
T
,…,ξ
n
=(a
n1
,a
n2
,…,a
n,2n
)
T
,且k
1
,k
2
,…,k
n
为任意常数。
解析
转载请注明原文地址:https://kaotiyun.com/show/ulr4777K
0
考研数学一
相关试题推荐
已知A是n阶矩阵,α1,α2……αs是n维线性无关向量组,若Aα1,Aα2……Aαs线性相关.证明:A不可逆.
设A为n阶非奇异矩阵,α为n维列向量,b为常数.记分块矩阵其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵.证明:矩阵Q可逆的充分必要条件是αTA一α≠b.
设A为n阶非奇异矩阵,α为n维列向量,b为常数.记分块矩阵其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵.计算并化简PQ;
设矩阵,矩阵X满足AX+E=A2+X,其中E为3阶单位矩阵.求矩阵X
求方程的通解.
已知n阶矩阵A的每行元素之和为a,求A的一个特征值,当k是自然数时,求Ak的每行元素之和.
设R3中两个基α1=[1,1,0]T,α2=[0,1,1]T,α3=[1,0,1]T;β1=[1,0,0]T,β2=[1,1,0]T,β3=[1,1,1]T.求β1,β2,β3到α1,α2,α3的过渡矩阵;
设n阶矩阵A的秩为1,试证:存在常数μ,对任意正整数k,使得Ak=μk-1A.
设三阶方阵A、B满足A2B—A—B=E,其中E为三阶单位矩阵,若A=,则行列式|B|=________.
随机试题
间接信用控制的货币政策工具的优点有()。
量力性原则要求教师要了解学生的发展水平,从实际出发进行教学。
当车床溜板箱内的对开螺母合上时,可以接通机动进给和快速移动。()
个人贷款的对象仅限于()
影响金融工具久期的因素不包括()。
农村资金互助社可以吸收社会公众存款、发放贷款。()
兴趣是人们对某些事物的特殊的认识倾向,就其内容而言,具有差异性特点。
我国广东肇庆七星岩仙女湖畔,有一座酷似卧佛的天然石山,每年都有几天,可见一轮红日从“卧佛”口中徐徐落下,形成“卧佛含丹”的地理景观。下列关于“卧佛含丹”景观的叙述,正确的是()。
ModifyCommand命令建立的文件的默认扩展名是
Accordingtothenews,______havebeenkilledinthewar.
最新回复
(
0
)