首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知线性方程组 的一个基础解系为(b11,b21,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T,试写出线性方程组 的通解,并说明理由。
已知线性方程组 的一个基础解系为(b11,b21,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T,试写出线性方程组 的通解,并说明理由。
admin
2018-04-08
72
问题
已知线性方程组
的一个基础解系为(b
11
,b
21
,…,b
1,2n
)
T
,(b
21
,b
22
,…,b
2,2n
)
T
,…,(b
n1
,b
n2
,…,b
n,2n
)
T
,试写出线性方程组
的通解,并说明理由。
选项
答案
可记方程组(Ⅰ)A
n×2n
=0,(Ⅱ)B
n×2n
y=0,B
T
的列是(Ⅰ)的基础解系,(Ⅰ),(Ⅱ)的系数矩阵分别记为A,B,由于B的每一行都是A
n×2n
x=0的解,故AB
T
=O。故由基础解系的定义知,B
T
的列向量是线性无关的,因此r(B)=n。从而线性方程组(Ⅱ)的基础解系中含有2n-r(B)=2n-r=n个向量。 对AB
T
=O两边取转置,有(AB
T
)
T
=BA
T
=O,则有A
T
的列向量,即A的行向量是By=0的解。 由于线性方程组(Ⅰ)的基础解系中含有n个向量,可知n=2n-r(A),得r(A)=2n-n=n。因 此,A的行向量线性无关。从而A
T
的列向量是By=0的n个线性无关的解,也即A
T
的列向量是By=0的基础解系。 综上所述,线性方程组(Ⅱ)的通解为k
1
ξ
1
+k
2
ξ
2
+…+k
n
ξ
n
其中, ξ
1
=(a
11
,a
21
,…,a
1,2n
)
T
,ξ
2
=(a
21
,a
22
,…,a
2,2n
)
T
,…,ξ
n
=(a
n1
,a
n2
,…,a
n,2n
)
T
,且k
1
,k
2
,…,k
n
为任意常数。
解析
转载请注明原文地址:https://kaotiyun.com/show/ulr4777K
0
考研数学一
相关试题推荐
设A是3×3矩阵,α1,α2,α3是三维列向量,且线性无关,已知Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.证明:Aα1,Aα2,Aα3线性无关;
已知α1=[1,2,一3,1]T,α2=[5,一5,a,11]T,α3=[1,一3,6,3]T,α4=[2,一1,3,a]T.问:a为何值时,α4能由α1,α2,α3线性表出,并写出它的表出式.
已知α=[1,3,2]T,β=[1,一1,一2]T,A=E一αβT,则A的最大特征值为__________.
已知ξ1,ξ2是方程(λE-A)X=0的两个不同的解向量,则下列向量中必是A的对应于特征值λ的特征向量的是()
设A为n阶非奇异矩阵,α为n维列向量,b为常数.记分块矩阵其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵.证明:矩阵Q可逆的充分必要条件是αTA一α≠b.
设R3中两个基α1=[1,1,0]T,α2=[0,1,1]T,α3=[1,0,1]T;β1=[1,0,0]T,β2=[1,1,0]T,β3=[1,1,1]T.求β1,β2,β3到α1,α2,α3的过渡矩阵;
设有行列式已知1703,3159,975,10959都能被13整除,不计算行列式D,证明D能被13整除.
随机试题
基金股票换手率是用基金交易量的一半除以基金()。
气性坏疽最关键的治疗措施是()
联网用户端的系统调试主要指()调试。
影响乳汁分泌的主要因素有()。
简述学习动机的激发措施。
教育的心理起源说的代表人物是()。
静止就是不运动。()
在考生文件夹下,打开文档WORD2.DOCX。按照要求完成下列操作并以该文件名(WORD2.DOCX)保存文档。【文档开始】世界各地区的半导体生产份额(21000年)年份美国日本欧洲亚太
It’sclearthatsocialmedialikeTwitterandFacebookarechangingthewaywelive.Indeed,wemightfeelasifwearesudd
IwenttothisSt.Valentine’spartytohavesomefun________(结果发现)thateveryonetherewasmymother’sage.
最新回复
(
0
)