首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设p(x),q(x),f(x)≠0均是关于x的已知连续函数,y1(x),y2(x),y3(x)是y″+ p(x)yˊ+q(x)y=f(x)的3个线性无关的解,C1,C2是两个任意常数,则该非齐次方程的通解是 ( )
设p(x),q(x),f(x)≠0均是关于x的已知连续函数,y1(x),y2(x),y3(x)是y″+ p(x)yˊ+q(x)y=f(x)的3个线性无关的解,C1,C2是两个任意常数,则该非齐次方程的通解是 ( )
admin
2020-07-03
33
问题
设p(x),q(x),f(x)≠0均是关于x的已知连续函数,y
1
(x),y
2
(x),y
3
(x)是y″+ p(x)yˊ+q(x)y=f(x)的3个线性无关的解,C
1
,C
2
是两个任意常数,则该非齐次方程的通解是 ( )
选项
A、C
1
y
1
+ (C
2
-C
1
) y
2
-(1+ C
2
) y
3
.
B、(C
1
-C
2
)y
1
+( C
2
-1) y
2
+(1-C
1
) y
3
.
C、(C
1
+C
2
) y
1
+(C
1
-C
2
)y
2
+(1-C
1
) y
3
.
D、C
1
y
1
+ C
2
y
2
+(1-C
1
-C
2
) y
3
.
答案
D
解析
实际上有下述定理.设p(x),q(x)与f(x)均为连续函数,f(x)≠0,考虑下述两个方程
y″+p(x)yˊ+q(x)y= f(x) (*)
及对应的齐次方程
y″+p(x)yˊ+q(x)y=0 (**)
①设y
1
(x),y
2
(x),y
3
(x)是(*)的3个解,A,B,C为常数.并设
y=A y
1
(x)+B y
2
(x)+Cy
3
(x). (***)
则(***)是(*)的解的充要条件是
A+B+C=1;
式(***)是(**)的解的充要条件是
A+B+C=0.
②设y
1
(x),y
2
(x),y
3
(x)是(*)的3个线性无关的解,A,B,C中两个为任意常数.
则(***)是(*)的通解的充要条件是
A+B+C=1;
式(***)是(**)的通解的充要条件是
A+B+C=0.
本题用到上述②.验算上述y
1
,y
2
,y
3
的系数之和,D的系数之和为C
1
+C
2
+(1-C
1
-C
2
)=1.所以D是通解.
转载请注明原文地址:https://kaotiyun.com/show/vQ84777K
0
考研数学二
相关试题推荐
利用直接展开法将下列函数展开成x的幂级数:(1)f(x)=ax(a>0,a≠1)(2)f(x)=sinx/2
[*]
求解下列方程:(Ⅰ)求方程χy〞=y′lny′的通解;(Ⅱ)求yy〞=2(y′2-y′)满足初始条件y(0)=1,y′=(0)=2的特解.
设A为n阶非零矩阵,且存在自然数k,使得Ak=O.证明:A不可以对角化.
设f(x)在x=0的邻域内有定义,f(0)=1,且=0,则f(x)在x=0处().
曲线L:的斜渐近线为____.
设f(x,y)为连续函数,改变为极坐标的累次积分为
[2004年]设函数f(x)在(一∞,+∞)上有定义,在区间[0,2]上f(x)=x(x2一4),若对任意x都满足f(x)=kf(x+2),其中k为常数.写出f(x)在[一2,0)上的表达式;
设则(A-1)*=________.
已知f(x,y)=x2arctan(y/x)-y2arctan(x/y),求
随机试题
下列关于物理化学法制备微型胶囊的叙述中错误的是()
国际通行的财务评价都是以()为主。
在供给曲线不变的情况下,需求的变动将引起()。
《基础教育课程改革纲要(试行)》规定,我国中小学课程设置“综合实践活动”,开设的学段是()
能力、性格、气质属于人的()。
学习的认知策略有复述策略、_______和组织策略。
教师道德不仅在教育过程中有重大作用,而且还可以促进整个社会良好风气的形成。这表明,教师职业道德具有()。
10016
全口义齿的固位是指()。
Certainclearpatternsinthemetamorphosisofabutterflyindicatethattheprocessis______.
最新回复
(
0
)