首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(I)设函数f(x)在[a,b]上连续,在(a,b)内具有二阶导数,且f(a)=f(b)=0,f(c)<0,(a<c<b).证明:至少存在一点ξ∈(a,b),使f"(ξ)>0; (Ⅱ)设h>0,f(x)在[a-h,a+h]上连续,在(a-h,a+h
(I)设函数f(x)在[a,b]上连续,在(a,b)内具有二阶导数,且f(a)=f(b)=0,f(c)<0,(a<c<b).证明:至少存在一点ξ∈(a,b),使f"(ξ)>0; (Ⅱ)设h>0,f(x)在[a-h,a+h]上连续,在(a-h,a+h
admin
2019-02-20
61
问题
(I)设函数f(x)在[a,b]上连续,在(a,b)内具有二阶导数,且f(a)=f(b)=0,f(c)<0,(a<c<b).证明:至少存在一点ξ∈(a,b),使f"(ξ)>0;
(Ⅱ)设h>0,f(x)在[a-h,a+h]上连续,在(a-h,a+h)内可导,证明:存在0<θ<1使得
选项
答案
(I)由于a<c<b,由已知条件可知f(x)在[a,c]与[c,b]上都满足拉格朗日中值定理的条件, 故存在点ξ
1
∈(a,c),ξ
2
∈(c,b),使 f(c)-f(a)=f’(ξ
1
)(c-a), ξ
1
∈(a,c); f(b)-f(c)=f’(ξ
2
)(b-c), ξ
2
∈(c,b). 由于f(a)=f(b)=0,于是有 f(c)=f’(ξ
1
)(c-a), ① -f(c)=f’(ξ
2
)(b-c). ② 由于c-a>0,b-c>0,f(c)<0,因此由式①、②可知 f’(ξ
1
)<0,f’(ξ
2
)>0. 由已知条件知f’(x)在[ξ
1
,ξ
2
]上满足拉格朗日中值定理的条件,故存在ξ∈(ξ
1
,ξ
2
)[*](a,b),使 [*] (Ⅱ)令F(x)=f(a+x)+f(a-x),则F(x)在[0,h]上连续,在(0,h)内可导,由拉格朗日中值定理可得存在θ∈(0,1)使得 [*] 由于 F(h)-F(0)=f(a+h)+f(a-h)-2f(a), F’(x)=f’(a+x)-f’(a-x), F’(θh)=f’(a+θh)-f’(a-θh), 因此存在满足0<θ<1的θ使得 [*]
解析
(I)证明在某区间内存在一点ξ使得f’(ξ)=0常可考虑利用罗尔定理,而证明在某区间内存在一点ξ使得f’(ξ)>0常可考虑利用拉格朗日中值定理.
(Ⅱ)分析:在[a,a+h]和[a-h,a]上分别对f(x)应用拉格朗日中值定理可得到存在θ
1
,θ
2
∈(0,1)使得
f(a+h)-f(a)=f’(a+θ
1
h)h, f(a-h)-f(a)=-f’(a-θ
2
h)h,
这时有
然而θ
1
与θ
2
未必相等.若将f(a+h)-2f(a)+f(a-h)重新组合成
f(a+h)-2f(a)+f(a-h)=[f(a+h)+f(a-h)]-[f(a+0)+f(a-0)],
我们发现它是F(x)=f(a+x)+f(a-x)在点x=h的值减去在点x=0的值,并且f’(a+θh)-f’(a-θh)=F’(θh),要证的等式就是对F(x)在[0,h]上应用拉格朗日中值定理的结果.
转载请注明原文地址:https://kaotiyun.com/show/vTP4777K
0
考研数学三
相关试题推荐
设A是m×n矩阵,B是n×m矩阵.则
α1,α2,α3,β1,β2均为4维列向量,A=(α1,α2,α3,β1),B=(α3,α1,α2,β2),且|A|=1,|B|=2,则|A+B|=()
微分方程y"一4y=x+2的通解为().
设可微函数f(x,y)在点(xo,yo)取得极小值,则下列结论正确的是
函数y=ln(1-2x)在x=0处的n阶导数y(n)(0)=______.
D是圆周x2+y2=Rx所围成的闭区域,则
n为自然数,证明:∫02πcosnxdx=∫02πsinnxdx=
设随机变量X的数学期望和方差分别为E(X)=μ,D(X)=σ2,用切比雪夫不等式估计P{|X-μ|<3σ}.
设函数,其中n=1,2,3,…为任意自然数,f(x)为[0,+∞)上正值连续函数,求证:(Ⅰ)Fn(x)在(0,+∞)存在唯一零点xn;(Ⅱ)(1+xn)收敛;(Ⅲ)Fn(x)=+∞。
n为给定的自然数,极限
随机试题
Afterstudyinginamedicalcollegeforfiveyears,Jane______herjobasadoctorinthecountryside.
对于服药时间,峻下逐水药的服用时间是
计时观察法最主要的三种方法是()。【2004年真题】
企业发生的停工损失属于自然灾害原因造成的,应将实际发生的停工损失记入“营业外支出”科目中。()
销售保单利益确定的保险产品,存在特定情况的,应在取得投保人签名确认的投保声明后方可承保。()
韦氏智力量表V—P差异没有实际意义可见于言语能力对操作能力缺陷的补偿,因为()是两个常常受言语能力影响的操作测验。
A、 B、 C、 D、 C分母2、4、8、16、(32)、64是公比为2的等比数列,分子1、3、7、15、(31)、63是其相对应的分母减1,故所求项为,选C。
连续型随机变量χ的概率密度为,则方差D(X)为()。
陪同口译
人身权利是指公民的人身不受非法侵犯的权利,包括生命健康权、人身自由权、人格尊严权、住宅安全权、通信自由权等具体权利。人最基本、最原始的权利,享有其他各项权利的前提是()
最新回复
(
0
)