首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n维向量α1,α2,…,αm(m<n)线性无关,证明:n维向量β1,β2,…,βm线性无关的 (1)充分条件是α1,α2,…,αm与β1,β2,…,βm等价. (2)充要条件是矩阵A=(α1,α2,…,αm)与矩阵B=(β1,β2,…,β
设n维向量α1,α2,…,αm(m<n)线性无关,证明:n维向量β1,β2,…,βm线性无关的 (1)充分条件是α1,α2,…,αm与β1,β2,…,βm等价. (2)充要条件是矩阵A=(α1,α2,…,αm)与矩阵B=(β1,β2,…,β
admin
2017-10-19
32
问题
设n维向量α
1
,α
2
,…,α
m
(m<n)线性无关,证明:n维向量β
1
,β
2
,…,β
m
线性无关的
(1)充分条件是α
1
,α
2
,…,α
m
与β
1
,β
2
,…,β
m
等价.
(2)充要条件是矩阵A=(α
1
,α
2
,…,α
m
)与矩阵B=(β
1
,β
2
,…,β
m
)等价.
选项
答案
(1)如果α
1
,α
2
,…,α
m
与β
1
,β
2
,…,β
m
等价,则 r(α
1
,α
2
,…,α
m
)=r(β
1
,β
2
,…,β
m
). 由于α
1
,α
2
,…,α
m
线性无关,r(α
1
,α
2
,…,α
m
)=m,所以β
1
,β
2
,…,β
m
线性无关,故充分性成立. (2)必要性.若β
1
,β
2
,…,β
m
线性无关,则r(α
1
,α
2
,…,α
m
)=r(β
1
,β
2
,…,β
m
)=m. 由于矩阵的秩就是其列向量组的秩,所以r(A)=r(B),又A与B均为n×m矩阵,故A与B等价. 充分性.若A与B等价,则r(A)=r(B),因为α
1
,α
2
,…,α
m
线性无关,有r(A)=m. 于是r(β
1
,β
2
,…,β
m
)=m,所以β
1
,β
2
,…,β
m
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/UaH4777K
0
考研数学三
相关试题推荐
设函数y(x)在[a,b]上连续.在(a,b)内二次可导,且满足其中函数p(x),q(x)与f(x)都在[a,b]上连续,且存在常数q0>0使得q(x)≥q0,存在常数F>0使得|f(x)|≤F.求证:当x∈[a,b]时.
设积分区域D={(x,y)|0≤x≤1,0≤y≤1},求.
已知y1=xex+e2x,y2=xex+e-x,y3=xex+e2x-e-x是某二阶线性非齐次微分方程的三个解,则此微分方程为___________.
设f(x)是区间上的正值连续函数,且,.若把I,J,K按其积分值从小到大的次序排列起来,则正确的次序是
设X,Y为两个随机变量,若E(XY)=E(X)E(Y),则().
设曲线(0<a<4)与x轴、y轴所围成的图形绕x轴旋转所得立体体积为V1(a),绕y轴旋转所得立体体积为V2(a),问a为何值时,V1(a)+V2(a)最大,并求最大值.
二次型f(x1,x2,x3)=x12+ax22+x32—4x1x2—8x1x3—4x2x3经过正交变换化为标准形5y12+by22一4y32,求:(1)常数a,b;(2)正交变换的矩阵Q.
计算和直线y=—x所围成的区域.
设x2+y2≤2ay(a>0),则在极坐标下的累次积分为().
已知数列=________.
随机试题
青少年好发的肿瘤为()。
与维持正常呼吸关系最密切的两脏是
根据《建设项目环境影响评价行为准则与廉政规定》,环境影响评价机构或者其环境影响评价技术人员应当遵守的行为准则不包括()。
航班动态显示系统显示的信息主要包括()和其他相关信息。
下列不属于客户财务信息的是()。
下列()不是影响流通渠道选择的一般因素。
下列有关承揽人权利义务的表述,正确的有()。
某企业采用托收承付结算方式销售一批商品,增值税专用发票注明的价款为1000万元,增值税税额为170万元,同时为客户代垫运输费5万元,全部款项已办妥托收手续。该企业应确认的应收账款为()万元。(2013年)
下列因素中不属于我国高等学校教师管理道德诉求的是()。
科学发展观是马克思主义同当代中国实际和时代特征相结合的产物,是中国共产党集体智慧的结晶,必须把它贯彻到我国现代化建设全过程、体现到党的建设各方面。科学发展观的实践要求是()
最新回复
(
0
)