首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A的秩为1,证明: (1)A可以表示成n×1矩阵和1×n矩阵的乘积; (2)存在数μ,对任意正整数k,有Ak=μk-1A.
设n阶矩阵A的秩为1,证明: (1)A可以表示成n×1矩阵和1×n矩阵的乘积; (2)存在数μ,对任意正整数k,有Ak=μk-1A.
admin
2016-09-19
62
问题
设n阶矩阵A的秩为1,证明:
(1)A可以表示成n×1矩阵和1×n矩阵的乘积;
(2)存在数μ,对任意正整数k,有A
k
=μ
k-1
A.
选项
答案
(1)将A以列分块,则r(A)=r(α
1
,α
2
,…,α
n
)=1表明列向量组α
1
,α
2
,…,α
n
的极大线性无关组由一个非零向量组成,设为α
i
=[a
1
,a
2
,…,a
n
]
T
(a
i
≠0),其余列向量均可由a
i
线性表出,设为a
i
=b
j
a
i
(j=1,2,…,n;j=i时,取b
i
=1),则 A=[α
1
,α
2
,…,α
n
]=[b
1
α
i
,b
2
α
i
,b
n
α
i
]=α
i
[b
1
,b
2
,…,b
n
]=[*] [b
1
,b
2
,…,b
n
]. (2)记α=α
i
=[a
1
,a
2
,…,a
n
]
T
,β=[b
1
,b
2
,…,b
n
]
T
,则 A=αβ
T
,A
k
(αβ
T
)
k
(αβ
T
)(αβ
T
)…(αβ
T
)=α(β
T
α)(β
T
α)…(β
T
α)β
T
. 记β
T
α=a
1
b
1
+a
2
b
2
+…+a
n
b
n
=μ,则 A
k
=αμ
k-1
β
T
=μ
k-1
A.
解析
转载请注明原文地址:https://kaotiyun.com/show/vVT4777K
0
考研数学三
相关试题推荐
A、 B、 C、 D、 A
掷一枚骰子,观察其出现的点数,A表示“出现奇数点”,B表示“出现的点数小于5”,C表示“出现的点数是小于5的偶数”,用集合列举法表示下列事件:Ω,A,B,C,A+B,A-B,B-A,AB,AC,+B.
互不相容事件与对立事件的区别何在?说出下列各对事件之间的关系:(1)|x-a|20与x≤20;(3)x>20与x20与x≤22;(5)“20件产品全是合格品”与“20件产品中恰有一件是废品”;(6)“20件产品全是合
α1,α2是向量组(Ⅱ)的一个极大无关组,(Ⅱ)的秩为2,故(Ⅰ)的秩为2.由于(Ⅰ)线性相关,从而行列式|β1,β2,β3|=0,由此解得a=3b;又β3可由向量组(Ⅱ)线性表示,从而β3可由α1,α2线性表示,所以向量组α1,α2,β3线性相关,于是行
设E,F是两个事件,判断下列各结论是否正确,如果正确,说明其理由;如果不正确,给出其反例.(1)P(E∩F)≤P(E|F);(2)P(E∩F|F)=P(E|F).
设向量组B:β1,β2,…,βr能由向量组A:α1,α2,…,αs线性表示为:其中,K为r×s矩阵,且向量组A线性无关,证明:向量组B线性无关的充要条件是矩阵K的秩r(K)=r.
下列函数在哪些点处间断,说明这些间断点的类型,如果是可去间断点,则补充定义或重新定义函数在该点的值而使之连续:
设半径为r的球的球心在半径为a的定球面上,试求r的值,使得半径为r的球的表面位于定球内部的那一部分的面积取最大值.
试求常数a和b的值,使得
设函数y=y(x)由方程ylny-x+y=0确定,试判断曲线y=y(x)在点(1,1)附近的凹凸性.
随机试题
功能性消化不良
A.缬氨酸B.胱氨酸C.甲硫氨酸D.亮氨酸集生糖氨基酸、必需氨基酸和支链氨基酸于一身的氨基酸是
腰椎间盘突出症特征不包括
某市是地处我国中部地区的中型城市,常年以野外观测某野生动物的旅游活动而闻名。该市曾组织多次国内外专家、学者进行现场实地调查,经过实践证明,野生动物适宜活动的地区应满足以下要求:(1)该受保护的动物喜爱以竹类植被作为食物;(2)坡度小于20°;(3)距
某单位外购如下货物,按照增值税的有关规定,可以作为进项税额从销项税额中抵扣的是( )。
在商用房贷款发放过程中,对于借款人未到银行直接办理开户放款手续的,()部门应及时将有关凭证邮寄给借款人或通知借款人来银行取回。
用来衡量和反映中央政府集中财力程度和宏观调控能力的指标是()。
在一个关系中,能够惟一确定一个元素的属性或属性组合的是______。
现在,成千上万的美国人沉湎于对身材苗条的追求之中。他们着迷于节食和锻炼,这不仅仅是因为他们对年轻外表的追求,最近的一项研究表明节食和体育锻炼对身体健康的具有极端重要性。如同在许多工业技术发达的国家中一样,北美人的生活方式发生了显著的变化。现代化的机器完成了
Itwastwoyearsagotodaythatthehuntingbancameintoforce,supposedlyendingcenturiesoftradition.However,thelawhas
最新回复
(
0
)