首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A的秩为1,证明: (1)A可以表示成n×1矩阵和1×n矩阵的乘积; (2)存在数μ,对任意正整数k,有Ak=μk-1A.
设n阶矩阵A的秩为1,证明: (1)A可以表示成n×1矩阵和1×n矩阵的乘积; (2)存在数μ,对任意正整数k,有Ak=μk-1A.
admin
2016-09-19
38
问题
设n阶矩阵A的秩为1,证明:
(1)A可以表示成n×1矩阵和1×n矩阵的乘积;
(2)存在数μ,对任意正整数k,有A
k
=μ
k-1
A.
选项
答案
(1)将A以列分块,则r(A)=r(α
1
,α
2
,…,α
n
)=1表明列向量组α
1
,α
2
,…,α
n
的极大线性无关组由一个非零向量组成,设为α
i
=[a
1
,a
2
,…,a
n
]
T
(a
i
≠0),其余列向量均可由a
i
线性表出,设为a
i
=b
j
a
i
(j=1,2,…,n;j=i时,取b
i
=1),则 A=[α
1
,α
2
,…,α
n
]=[b
1
α
i
,b
2
α
i
,b
n
α
i
]=α
i
[b
1
,b
2
,…,b
n
]=[*] [b
1
,b
2
,…,b
n
]. (2)记α=α
i
=[a
1
,a
2
,…,a
n
]
T
,β=[b
1
,b
2
,…,b
n
]
T
,则 A=αβ
T
,A
k
(αβ
T
)
k
(αβ
T
)(αβ
T
)…(αβ
T
)=α(β
T
α)(β
T
α)…(β
T
α)β
T
. 记β
T
α=a
1
b
1
+a
2
b
2
+…+a
n
b
n
=μ,则 A
k
=αμ
k-1
β
T
=μ
k-1
A.
解析
转载请注明原文地址:https://kaotiyun.com/show/vVT4777K
0
考研数学三
相关试题推荐
[*]
掷一枚骰子,观察其出现的点数,A表示“出现奇数点”,B表示“出现的点数小于5”,C表示“出现的点数是小于5的偶数”,用集合列举法表示下列事件:Ω,A,B,C,A+B,A-B,B-A,AB,AC,+B.
在电炉上安装了4个温控器,其显示温度的误差是随机的,在使用过程中,只要有2个温控器显示的温度不低于临界温度t0,电炉就断电,以E表示事件“电炉断电”,而T(1)≤T(2)≤T(3)≤(4)为4个温控器显示的按递增顺序排列温度值,则事件E等于().
设β,α1,α2线性相关,β,α2,α3线性无关,则().
设α1=(1,1,1),α2=(1,2,3),α3=(1,3,t),求:(1)t为何值时,向量组α1,α2,α3线性相关;(2)t为何值时,向量组α1,α2,α3线性无关;(3)当线性相关时,将α3表为α1和α2的线性组合.
验证函数u=e-kn2tsinnx满足热传导方程ut=kuxx.
设水以常速(即单位时间注入的水的体积为常数)注入图2.7所示的罐中,直至将水罐注满.画出水位高度随时问变化的函数y=y(t)的图形(不要求精确图形,但应画出曲线的凹凸方向并表示出拐点).
设矩阵已知线性方程组AX=β有解但不唯一,试求(I)a的值;(Ⅱ)正交矩阵Q,使QTAQ为对角矩阵.
设f(x)和φ(x)在(-∞,+∞)内有定义,f(x)为连续函数,且f(x)≠0,φ(x)有间断点,则().
随机试题
3型管子割刀切割的管径为()mm。
心尖搏动的强弱及范围变化的生理条件是()
帕金森病的治疗首选药物为()。
适合做大规模筛检的疾病有
项目经理部在施工过程中起到的作用是()。
保障停电作业安全的技术措施有()。
5.下面关于《木兰诗》中“朔气传金柝,寒光照铁衣”理解正确的是()。
()是社区服务的一支重要力量,民政部门应积极支持其开展社区服务活动。
张某外出,台风将至。邻居李某担心张某年久失修的房子被风刮倒,祸及自家,就雇人用几根木料支撑住张某的房子.但张某的房子仍然不敌台风,倒塌之际压死了李某养的数只鸡。下列哪一说法是正确的()。
WhenDonaldOlayerenrolledinnursingschoolnineyearsago,hisfathertookithard."Here’smyfather,asteelworker,hearing
最新回复
(
0
)