首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
A是n阶矩阵,数a≠b.证明下面3个断言互相等价: (1)(A-aE)(A-bE)=0. (2)r(A-aE)+r(A-bE)=n. (3)A相似于对角矩阵,并且特征值满足(λ-a)(λ-b)=0.
A是n阶矩阵,数a≠b.证明下面3个断言互相等价: (1)(A-aE)(A-bE)=0. (2)r(A-aE)+r(A-bE)=n. (3)A相似于对角矩阵,并且特征值满足(λ-a)(λ-b)=0.
admin
2016-10-21
65
问题
A是n阶矩阵,数a≠b.证明下面3个断言互相等价:
(1)(A-aE)(A-bE)=0.
(2)r(A-aE)+r(A-bE)=n.
(3)A相似于对角矩阵,并且特征值满足(λ-a)(λ-b)=0.
选项
答案
不妨设a和b都是A的特征值.(因为如果a不是A的特征值,则3个断言都推出A=bE.如果b不是A的特征值,则3个断言都推出A=aE.) (1)[*](2) 用关于矩阵的秩的性质,由(A-aE)(A-bE)=0.得到: r(A-aE)+r(A-bE)≤n, r(A-aE)+r(A-bE)≥r((A-aE)-(A-bE))=r((b-a)E)=n, 从而r(A-aE)+r(A-bE)=n. (2)[*](3) 记k
a
,k
b
分别是a,b的重数,则有 k
a
≥n-r(A-aE)① k
b
≥n-r(A-bE)② 两式相加得n≥k
a
+k
b
≥n-r(A-aE)+n-r(A-bE)=n,于是其中“≥”都为“=”,从而①和②都是等式,并且k
a
+k
b
=n. k+k=n,说明A的特征值只有a和b,它们都满足(λ-a)(λ-b)=0. ①和②都是等式,说明A相似于对角矩阵. (3)[*](1) A的特征值满足(λ-a)(λ-b)=0,说明A的特征值只有a和b.设B是和A相似的对角矩阵,则它的对角线上的元素都是a或b,于是(B-aE)(B-bE)=0.而(A-aE)(A-aE)相似于(A-bE)(B-bE),因此(A-aE)(A-bE)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/vXt4777K
0
考研数学二
相关试题推荐
设函数f(x)在x0的某一邻域内具有直到n阶的连续导数,且f’(x0)=f"(x0)=…..=f(n-1)(x0)=0,而f(n)(x0)≠0,试证:当n为奇数时,f(x0)不是极值.
若在(-∞,+∞)上连续,则a=________。
设函数f(x)为可导函数,且f"(x)>0,则在[a,b]内________。
设f(x)在[0,2]上连续,且f(0)=0,f(1)=1.证明:存在c∈(0,1),使得f(c)=1-2c;存在ξ∈[0,2],使得2f(0)+f(1)+3f(2)=6f(ξ).
证明
若f(x)在[0,a]上连续,a>0,且f"(x)≥0,证明:∫abf(x)dx≥a.
设f(x)在[a,b]上可导,且f’(x)≤M,f(a)=0,证明:∫abf(x)dx≤(b-a)2
求曲线y=ex,y=sinx,x=0和x=1所围成的图形绕x轴旋转所成立体的体积。
求,其中D是由圆x2+y2=4和(x+1)2+y2=1所围成的平面区域如图所示。
从船上向海中沉放某种探测仪器,按探测要求,需确定仪器的下沉深度y(从海平面算起)与下沉速度v之间的函数关系.设仪器在重力作用下,从海平面由静止开始铅直下沉,在下沉过程中还受到阻力和浮力的作用,设仪器的质量为m,体积为B,海水比重为ρ,仪器所受的阻力与下沉速
随机试题
患者,女,34岁。诊断哮喘5年。长期应用倍氯米松(必可酮)气雾剂治疗,250μg/d,症状控制满意。近来受凉后再次出现喘憋,活动耐力无明显受限,夜间偶有发作。发作时吸入沙丁胺醇症状可缓解。患者治疗后出现口腔黏膜白色斑点,不正确的治疗措施是
前列腺癌最常见的组织学类型是
肛瘘
患者,女,14岁。左面部肿大,畸形,随年龄而增长。检查:左鼻及唇颊增大、下坠,软,面部及躯干皮肤有多处棕色斑。最可能的临床诊断是
A.风湿性心脏病B.心律失常C.二尖瓣狭窄伴关闭不全D.心功能Ⅲ级E.贫血于病因诊断的是()
某教学楼由10层和2层两部分组成,均拟设埋深相同的1层地下室。地基土为均匀的细粒土,场地在勘察深度内未见地下水。以下基础方案中的()不能有效减少高低层的不均匀沉降。
法律意义上的物是指_________的生产资料和消费资料。()
以下属于自物权的是( )。
下面不属于需求分析阶段任务的是
Manyoftheemployeesthinktheircareerpathbeginsduringtheiremploymentorwhentheygetajob.Butbasically,ifwelooka
最新回复
(
0
)