首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
A是n阶矩阵,数a≠b.证明下面3个断言互相等价: (1)(A-aE)(A-bE)=0. (2)r(A-aE)+r(A-bE)=n. (3)A相似于对角矩阵,并且特征值满足(λ-a)(λ-b)=0.
A是n阶矩阵,数a≠b.证明下面3个断言互相等价: (1)(A-aE)(A-bE)=0. (2)r(A-aE)+r(A-bE)=n. (3)A相似于对角矩阵,并且特征值满足(λ-a)(λ-b)=0.
admin
2016-10-21
47
问题
A是n阶矩阵,数a≠b.证明下面3个断言互相等价:
(1)(A-aE)(A-bE)=0.
(2)r(A-aE)+r(A-bE)=n.
(3)A相似于对角矩阵,并且特征值满足(λ-a)(λ-b)=0.
选项
答案
不妨设a和b都是A的特征值.(因为如果a不是A的特征值,则3个断言都推出A=bE.如果b不是A的特征值,则3个断言都推出A=aE.) (1)[*](2) 用关于矩阵的秩的性质,由(A-aE)(A-bE)=0.得到: r(A-aE)+r(A-bE)≤n, r(A-aE)+r(A-bE)≥r((A-aE)-(A-bE))=r((b-a)E)=n, 从而r(A-aE)+r(A-bE)=n. (2)[*](3) 记k
a
,k
b
分别是a,b的重数,则有 k
a
≥n-r(A-aE)① k
b
≥n-r(A-bE)② 两式相加得n≥k
a
+k
b
≥n-r(A-aE)+n-r(A-bE)=n,于是其中“≥”都为“=”,从而①和②都是等式,并且k
a
+k
b
=n. k+k=n,说明A的特征值只有a和b,它们都满足(λ-a)(λ-b)=0. ①和②都是等式,说明A相似于对角矩阵. (3)[*](1) A的特征值满足(λ-a)(λ-b)=0,说明A的特征值只有a和b.设B是和A相似的对角矩阵,则它的对角线上的元素都是a或b,于是(B-aE)(B-bE)=0.而(A-aE)(A-aE)相似于(A-bE)(B-bE),因此(A-aE)(A-bE)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/vXt4777K
0
考研数学二
相关试题推荐
验证函数在-1≤x≤1上是否满足拉格朗日定理,如满足,求出满足定理的中值ε。
设函数y-=f(x)具有二阶导数,且f’(x)>0,f"(x)>0,△x为自变量x在点x0处的增量,△y与dy分别为f(x)在点x0处相应的增量与微分,若△x>0,则________。
求下列三角函数的不定积分。∫sin23xdx
求下列三角函数的不定积分。∫sinxsin3xdx
求下列的不定积分。∫(x-2)2dx
设a>0,x1>0,且定义xn+1=1/4(3xn+a/xn3)(n=1,2,…),证明:存在并求其值.
设函数f(x)可导且0≤f’(x)≤k/(1+x2)(k>0),对任意的xn,作xn+1=f(xn)(n=0,1,2,…),证明:存在且满足方程f(x)=x.
计算二重积分,其中D是由直线y=x,y=1,x=0所围成的平面区域。
求下列微分方程的通解。(x+1)y’+1=2e-y
设A是n(n>1)阶矩阵,满足Ak=2E(k>2,k∈Z+),则(A+)k=().
随机试题
属于DNA病毒的是
AOSC在中医学中辨证多属于急性化脓性胆囊炎中医学中辨证多属于
患儿,男,1岁,因肺炎入院,T39.8℃,P120次/分,R28次/分。青霉素皮试阴性后遵医嘱给予青霉素40万Uimqid,为该患者肌内注射应选择的部位是()。
甲于2月3日向乙借用一台彩电,乙于2月6日向甲借用了一部手机。到期后,甲未向乙归还彩电,乙因此也拒绝向甲归还手机。关于乙的行为,下列哪些说法是错误的?
环境空气一氧化碳的监测分析方法是()。
盾构施工中,对进出洞口外侧的土体进行改良的目的有(),保证盾构进出洞安全。
下列税种中,税收收入和征收管辖权限均属于中央的有()。
表示传统师德非常重视严于律己、身体力行、为人表率的模范作用的先哲名言是()。
连续两年被确定为不称职的公务员,应当给予开除的行政处分。()
A、Sheisn’tthereinthemorning.B、Herassistantisn’tthereinthemorning.C、Shewon’thavetheformsheneedsuntiltheafte
最新回复
(
0
)