首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
假设随机变量X与Y相互独立,如果X服从标准正态分布,Y的概率分布为P{Y=-1}=,求:(Ⅰ)Z=XY的概率密度fZ(z);(Ⅱ)V=|X-Y|的概率密度fV(v).
假设随机变量X与Y相互独立,如果X服从标准正态分布,Y的概率分布为P{Y=-1}=,求:(Ⅰ)Z=XY的概率密度fZ(z);(Ⅱ)V=|X-Y|的概率密度fV(v).
admin
2016-10-20
60
问题
假设随机变量X与Y相互独立,如果X服从标准正态分布,Y的概率分布为P{Y=-1}=
,求:(Ⅰ)Z=XY的概率密度f
Z
(z);(Ⅱ)V=|X-Y|的概率密度f
V
(v).
选项
答案
(Ⅰ)依题意P{Y=-1}=[*],X~N(0,1)且X与Y相互独立,于是Z=XY的分布函数为 F
Z
(z)=P{XY≤z}=P{Y=-1}P{XY≤z}Y=-1}+P{Y=1}P{XY≤z}Y=1} =P{Y=-1}P{-X≤z|Y=-1}+P=1}P{X≤z|Y=1}. =P{Y=-1}P{X≥-z}+P{Y=1}P{X≤z} [*] 即Z=XY服从标准正态分布,其概率密度为 [*] (Ⅱ)由于V=|X-Y|只取非负值,因此当v<0时,其分布函数F
V
(v)=P{|X-Y|≤v}=0; 当v≥0时, F
V
(v)=P{-v≤X-Y≤v} =P{Y=-1}P{-v≤X-Y≤v|Y=-1} +P{yY=1}P{-v≤X-Y≤v|Y=1} [*] 由于F
V
(v)是连续函数,且除个别点外,导数存在,因此V的概率密度为 [*]
解析
由于Y为离散型随机变量,X与Y独立,因此应用全概率公式可得分布函数,进而求得概率密度.
转载请注明原文地址:https://kaotiyun.com/show/vlT4777K
0
考研数学三
相关试题推荐
-1
将13个分别写有A、A、A、C、E、H、I、I、M、M、N、T、T的卡片随意地排成一行,求恰好排单词“MATHEMATICIAN”的概率.
设A,B是同阶正定矩阵,则下列命题错误的是().
利用概率测度的性质证明:在投掷两枚硬币的试验中,第一枚是均匀的当且仅当P({(H,H),(H,T)})=1/2;第二枚硬币是均匀的当且仅当P({(H,H),(T,H)})=1/2,其中H表示硬币出现的是正面,T表示硬币出现的是反面.
已知二次型f(x1,x2,x3,x4)=2x1x2+2x1x3+2x1x4+2x3x4,则二次型f(x1,x2,x3,x4)的矩阵为_______,二次型f(x1,x2,x3,x4)的秩为________.
证明[*]
求幂级数的收敛区间,并讨论该区间端点处的收敛性.
代数学基本定理告诉我们,n次多项式至多有n个实根,利用此结论及罗尔定理,不求出函数f(x)=(x-1)(x-2)(x-3)(x-4)的导数,说明方程fˊ(x)=0有几个实根,并指出它们所在的区间.
设∑是空间有界闭区域Ω的整个边界曲面,u(x,y,z),v(x,y,z)∈C(2)(Ω),分别表示u(x,y,z),v(x,y,z)沿∑的外法线方向的方向导数,证明:
非齐次线性方程组Ax=b中未知量个数为n,方程个数为m,系数矩阵A的秩为r,则
随机试题
甲、乙、丙、丁四位同学预测期中考试的结果。甲:“我认为这次大家都能过!”乙:“不可能!我觉得自己过不了。”丙:“丁肯定是没问题的。”丁:“拜托!要是我没问题,大家都没问题。”成绩公布后,证明四人中只有一人的说法是错误的,则说法错误的人是:
相对危险度(RR)是队列研究中反映暴露与发病(死亡)关联强度的指标,下列说法哪一个是正确的
颈深筋膜浅层在下列哪个部位分为两层形成颌下间隙的基础
下列情形中,构成倒卖文物罪的有哪些?
甲公司被依法宣告破产,管理人的清算结果表明:甲公司的破产财产共1900万元,发生破产清算费用110万元,欠职工工资140万元,欠税款1500万元,破产债权3000万元。其中乙公司拥有破产债权1000万元。根据《破产法》规定,乙公司就破产债权受偿的金额为(
某生物制药公司年销售净额280万元。息税前利润80万元,固定成本32万元,变动成本总额168万元,资产总额200万元,资产负债率为40%,综合债务利率为12%,公司的所得税税率为25%。预计三年后,公司的资产总额达到1000万元,负债率会提高到60%。在此
下列说法不正确的有()。
师生关系在人格上是一种()。
Imagineeatingeverythingdeliciousyouwantwithnoneofthefat.Thatwouldbegreat,wouldn’tit?New"fakefat"products
Ibelievehe______anaccident,otherwisehewouldhavearrivedontime.
最新回复
(
0
)