首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
假设随机变量X与Y相互独立,如果X服从标准正态分布,Y的概率分布为P{Y=-1}=,求:(Ⅰ)Z=XY的概率密度fZ(z);(Ⅱ)V=|X-Y|的概率密度fV(v).
假设随机变量X与Y相互独立,如果X服从标准正态分布,Y的概率分布为P{Y=-1}=,求:(Ⅰ)Z=XY的概率密度fZ(z);(Ⅱ)V=|X-Y|的概率密度fV(v).
admin
2016-10-20
91
问题
假设随机变量X与Y相互独立,如果X服从标准正态分布,Y的概率分布为P{Y=-1}=
,求:(Ⅰ)Z=XY的概率密度f
Z
(z);(Ⅱ)V=|X-Y|的概率密度f
V
(v).
选项
答案
(Ⅰ)依题意P{Y=-1}=[*],X~N(0,1)且X与Y相互独立,于是Z=XY的分布函数为 F
Z
(z)=P{XY≤z}=P{Y=-1}P{XY≤z}Y=-1}+P{Y=1}P{XY≤z}Y=1} =P{Y=-1}P{-X≤z|Y=-1}+P=1}P{X≤z|Y=1}. =P{Y=-1}P{X≥-z}+P{Y=1}P{X≤z} [*] 即Z=XY服从标准正态分布,其概率密度为 [*] (Ⅱ)由于V=|X-Y|只取非负值,因此当v<0时,其分布函数F
V
(v)=P{|X-Y|≤v}=0; 当v≥0时, F
V
(v)=P{-v≤X-Y≤v} =P{Y=-1}P{-v≤X-Y≤v|Y=-1} +P{yY=1}P{-v≤X-Y≤v|Y=1} [*] 由于F
V
(v)是连续函数,且除个别点外,导数存在,因此V的概率密度为 [*]
解析
由于Y为离散型随机变量,X与Y独立,因此应用全概率公式可得分布函数,进而求得概率密度.
转载请注明原文地址:https://kaotiyun.com/show/vlT4777K
0
考研数学三
相关试题推荐
[*]
一个袋子中装有5个红球,3个白球,2个黑球,从中任取3个球,求其中恰有一个红球、一个白球和一个黑球的概率.
将13个分别写有A、A、A、C、E、H、I、I、M、M、N、T、T的卡片随意地排成一行,求恰好排单词“MATHEMATICIAN”的概率.
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
如果n个事件A1,A2,…,An相互独立,证明:
设函数z=f(x,-y)在点P(x,y)处可微,从x轴正向到向量l的转角为θ,从x轴的正向到向量m的转角为θ+π/2,求证:
将函数f(x)=e2x,x∈[0,π]展开成余弦级数.
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B.求AB-1.
非齐次线性方程组Ax=b中未知量个数为n,方程个数为m,系数矩阵A的秩为r,则
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B.求AB-1.
随机试题
A.抗乙酰胆碱受体抗体B.抗IgG的Fc片段抗体C.抗TSH受体抗体D.抗胰岛细胞抗体E.抗SS-A、SSB抗体
寻常疣和尖锐湿疣的病原是
居民委员会、村民委员会发现其所在区域内的生产经营单位存在事故隐患或者安全生产违法行为时,有权向当地人民政府或有关部门报告。()
职业健康安全与环境管理的协调性的影响因素是()。
信息披露的原则主要体现在()上。
以下说法不正确的是()。
如图,有一个正方体水箱,在某一个侧面相同高度的地方有三个大小相同的出水孔。用一个进水管给空水箱灌水。若三个出水孔全关闭。则需要用1小时将水箱灌满;若打开一个出水孔,则需要用1小时5分钟将水箱灌满;若打开两个出水孔,则需要用72分钟将水箱灌满。若三个出水孔全
From:GavinSaundersTo:ArikoBeckerSubject:VivatechDocumentDate:August9,8:32p.m.Ariko,AclientbythenameofFern
—Youwillhearanotherfiveshortrecordings.Eachspeakeristalkabouthisjob.—Foreachrecording,decidewhothespeakeris
Knowledgemaybeacquiredthroughconversation,watchingtelevisionortravelling,butthedeepestandmostconsistentwayisth
最新回复
(
0
)