首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2001年] 设A为n阶实对称矩阵,秩(A)=n,Aij是A=[aij]n×n中元素aij(i,j=1,2,…,n)的代数余子式,二次型 二次型g(X)=XTAX与f(X)的规范形是否相同?说明理由.
[2001年] 设A为n阶实对称矩阵,秩(A)=n,Aij是A=[aij]n×n中元素aij(i,j=1,2,…,n)的代数余子式,二次型 二次型g(X)=XTAX与f(X)的规范形是否相同?说明理由.
admin
2019-06-25
55
问题
[2001年] 设A为n阶实对称矩阵,秩(A)=n,A
ij
是A=[a
ij
]
n×n
中元素a
ij
(i,j=1,2,…,n)的代数余子式,二次型
二次型g(X)=X
T
AX与f(X)的规范形是否相同?说明理由.
选项
答案
首先应注意,因合同变换不改变二次型的正惯性指数及负惯性指数,因而合同变换不改变二次型的规范形,即当两个二次型f(X)与g(X)的矩阵合同时,二次型f(X)与g(X)有相同的规范形.基于此,有下面三种方法证明f(X)与g(X)有相同的规范形. 解一 证f(X)与g(X)的矩阵合同.事实上,存在可逆矩阵A
-1
,使 (A
-1
)
T
AA
-1
=(A
-1
)
T
=(A
T
)
-1
=A
-1
. 于是g(X)=X
T
AX与f(X)=X
T
A
-1
X有相同的规范形. 解二 对二次型g(X)=X
T
AX作可逆的线性变换X=A
-1
Y,其中Y=[y
1
,y
2
,…,y
n
]
T
, 则g(X)=X
T
AX=(A
-1
Y)
T
AA
-1
Y=Y
T
(A
-1
)
T
AA
-1
y=Y
T
A
-1
Y.由此可知,A与A
-1
合同,则f(X)与g(X)必有相同的规范形. 解三 设A的全部特征值为λ
1
,λ
2
,…,λ
n
,则A
-1
的全部特征值为1/λ
1
,1/λ
2
,…,1/λ
n
.可见A与A
-1
的特征值中正与负的项数分别相同,因而二次型f(X)=X
T
A
-1
X与g(X)=X
T
AX的标准形中系数为正与负的项数分别相同,从而f(X)与g(X)有相同的正、负惯性指数,故它们有相同的规范形.
解析
转载请注明原文地址:https://kaotiyun.com/show/wUJ4777K
0
考研数学三
相关试题推荐
一个盒子中5个红球,5个白球,现按照如下方式,求取到2个红球和2个白球的概率.逐个抽取,取后无放回;
设f(x)在[a,b]上连续,在(a,b)内可导(a>0).证明:存在ξ,η∈(a,b),使得
设f(x)具有二阶连续可导,且则().
把写成极坐标的累次积分,其中D={(x,y)|0≤x≤1,0≤y≤x}.
设φ1(x),φ2(x)为一阶非齐次线性微分方程y′+P(x)y=Q(x)的两个线性无关的特解,则该方程的通解为().
设向量α=(a1,a2,…,an)T,其中a1≠0,A=ααT.求A的非零特征值及其对应的线性无关的特征向量.
计算下列积分:
设A为n阶实对称可逆矩阵,记X=(x1,x2,…,xn)T,把二次型f(x1,x2,…,xn)写成矩阵形式;
设f(x)在(一∞,+∞)连续,在点x=0处可导.且f(0)=0.令求F’(x)并讨论其连续性.
讨论下列函数的连续性并判断间断点的类型:
随机试题
脑中氨的主要去路是()
下列哪型白斑恶变倾向最小
在基本建设项目竣工财务决算表中,属于资金占用项目的是()。
在法定减免税之外.国家按照困际通行规则和我国实际情况,制定发布的有关进出口货物减免关税的政策,称为特定或政策性减免税。下列货物属于特定减免税的有()。
下列关于正态分布的描述,正确的是()。
甲公司生产的手表,因质量上乘、款式新颖、价廉物美而深受消费者的喜爱。乙公司大量购入这种手表后,未经甲公司同意,将手表上甲公司的注册商标换成乙公司的注册商标予以销售。对乙公司的行为,下列说法哪些是正确的?
华盛顿国立气象研究所的墙上有这么一句话:“当我们做对了,没有人会记得;当我们做错了,没有人会忘记。”气象研究所的墙上写这句话的目的是()。
仔细观察会发现,苍蝇在落下之后,经常把两只前腿蹭来蹭去,这样做的原因是为了()。
在秦朝司法审判结束之后宣读判决书被称为()
(09年)设(I)求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3;(Ⅱ)对(I)中的任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
最新回复
(
0
)