首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2001年] 设A为n阶实对称矩阵,秩(A)=n,Aij是A=[aij]n×n中元素aij(i,j=1,2,…,n)的代数余子式,二次型 二次型g(X)=XTAX与f(X)的规范形是否相同?说明理由.
[2001年] 设A为n阶实对称矩阵,秩(A)=n,Aij是A=[aij]n×n中元素aij(i,j=1,2,…,n)的代数余子式,二次型 二次型g(X)=XTAX与f(X)的规范形是否相同?说明理由.
admin
2019-06-25
62
问题
[2001年] 设A为n阶实对称矩阵,秩(A)=n,A
ij
是A=[a
ij
]
n×n
中元素a
ij
(i,j=1,2,…,n)的代数余子式,二次型
二次型g(X)=X
T
AX与f(X)的规范形是否相同?说明理由.
选项
答案
首先应注意,因合同变换不改变二次型的正惯性指数及负惯性指数,因而合同变换不改变二次型的规范形,即当两个二次型f(X)与g(X)的矩阵合同时,二次型f(X)与g(X)有相同的规范形.基于此,有下面三种方法证明f(X)与g(X)有相同的规范形. 解一 证f(X)与g(X)的矩阵合同.事实上,存在可逆矩阵A
-1
,使 (A
-1
)
T
AA
-1
=(A
-1
)
T
=(A
T
)
-1
=A
-1
. 于是g(X)=X
T
AX与f(X)=X
T
A
-1
X有相同的规范形. 解二 对二次型g(X)=X
T
AX作可逆的线性变换X=A
-1
Y,其中Y=[y
1
,y
2
,…,y
n
]
T
, 则g(X)=X
T
AX=(A
-1
Y)
T
AA
-1
Y=Y
T
(A
-1
)
T
AA
-1
y=Y
T
A
-1
Y.由此可知,A与A
-1
合同,则f(X)与g(X)必有相同的规范形. 解三 设A的全部特征值为λ
1
,λ
2
,…,λ
n
,则A
-1
的全部特征值为1/λ
1
,1/λ
2
,…,1/λ
n
.可见A与A
-1
的特征值中正与负的项数分别相同,因而二次型f(X)=X
T
A
-1
X与g(X)=X
T
AX的标准形中系数为正与负的项数分别相同,从而f(X)与g(X)有相同的正、负惯性指数,故它们有相同的规范形.
解析
转载请注明原文地址:https://kaotiyun.com/show/wUJ4777K
0
考研数学三
相关试题推荐
设y′=arctan(x一1)2,y(0)=0,求
设A为四阶矩阵,|A*|=8,则
设有三个线性无关的特征向量,求x,y满足的条件.
设求φ"(x),其中f(x)为连续函数.
连续函数f(x)满足则f(x)=__________.
设随机变量X~U[0,2],Y=X2,则X,Y().
用配方法化下列二次型为标准形:f(x1,x2,x3)=x12+2x22一5x32+2x1x2—2x1x3+2x2x3.
设n阶实对称矩阵A的秩为r,且满足A2=A(A称为幂等阵).求:二次型XTAX的标准形;
(2010年)设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且2f(0)=∫02f(x)dx=f(2)+f(3)。(I)证明存在η∈(0,2),使f(η)=f(0);(Ⅱ)证明存在ξ∈(0,3),使f"(ξ)=0。
设F(x)=∫01(1一t)ln(1+xt)dt(x>一1),求F’(x)(x>一1,x≠0)并讨论F’(x)在(一1,+∞)上的连续性.
随机试题
黄土汤的功效是
某投资者以1000万元一次性付款方式取得一写字楼物业20年的经营收益权,第一年投入装修费用200万元(按年末一次投入计算)并完成装修工程。第二年开始出租,当年净租金收入为200万元,以后每年以5%的比例递增。若房地产市场上写字楼物业投资的基准收益率为15%
某工程施工单位按招标文件中提供的工程量清单作出报价(见表4—1)。施工合同约定:工程预付款为合同总价的20%,从工程进度款累计总额达到合同总价10%的月价开始,按当月工程进度款的30%扣回,扣完为止;施工过程中发生的设计变更,采用以直接费为计算基础的全费用
背景资料某污水厂扩建工程,由原水管线、格栅间、提升泵房、沉砂池、初沉池等组成,承包单位以2250万元中标。原水管线基底标高为-6.00m(地面标高为±0.00),基底处于砂砾层内,且北邻S河,地下水位标高为-3.00m。 项目部组建后,经测算,该工程
反映一定会计期间经营成果的要素包括()。
关于无套利定价技术,下列说法正确的有( )。
基于BIM的6D模型,其特点是附加了()因素。
=().
以培养学生的探索精神和自学能力为主要目标的教学方法是()
【S1】【S8】
最新回复
(
0
)