首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2001年] 设A为n阶实对称矩阵,秩(A)=n,Aij是A=[aij]n×n中元素aij(i,j=1,2,…,n)的代数余子式,二次型 二次型g(X)=XTAX与f(X)的规范形是否相同?说明理由.
[2001年] 设A为n阶实对称矩阵,秩(A)=n,Aij是A=[aij]n×n中元素aij(i,j=1,2,…,n)的代数余子式,二次型 二次型g(X)=XTAX与f(X)的规范形是否相同?说明理由.
admin
2019-06-25
80
问题
[2001年] 设A为n阶实对称矩阵,秩(A)=n,A
ij
是A=[a
ij
]
n×n
中元素a
ij
(i,j=1,2,…,n)的代数余子式,二次型
二次型g(X)=X
T
AX与f(X)的规范形是否相同?说明理由.
选项
答案
首先应注意,因合同变换不改变二次型的正惯性指数及负惯性指数,因而合同变换不改变二次型的规范形,即当两个二次型f(X)与g(X)的矩阵合同时,二次型f(X)与g(X)有相同的规范形.基于此,有下面三种方法证明f(X)与g(X)有相同的规范形. 解一 证f(X)与g(X)的矩阵合同.事实上,存在可逆矩阵A
-1
,使 (A
-1
)
T
AA
-1
=(A
-1
)
T
=(A
T
)
-1
=A
-1
. 于是g(X)=X
T
AX与f(X)=X
T
A
-1
X有相同的规范形. 解二 对二次型g(X)=X
T
AX作可逆的线性变换X=A
-1
Y,其中Y=[y
1
,y
2
,…,y
n
]
T
, 则g(X)=X
T
AX=(A
-1
Y)
T
AA
-1
Y=Y
T
(A
-1
)
T
AA
-1
y=Y
T
A
-1
Y.由此可知,A与A
-1
合同,则f(X)与g(X)必有相同的规范形. 解三 设A的全部特征值为λ
1
,λ
2
,…,λ
n
,则A
-1
的全部特征值为1/λ
1
,1/λ
2
,…,1/λ
n
.可见A与A
-1
的特征值中正与负的项数分别相同,因而二次型f(X)=X
T
A
-1
X与g(X)=X
T
AX的标准形中系数为正与负的项数分别相同,从而f(X)与g(X)有相同的正、负惯性指数,故它们有相同的规范形.
解析
转载请注明原文地址:https://kaotiyun.com/show/wUJ4777K
0
考研数学三
相关试题推荐
设B≠0为三阶矩阵,且矩阵B的每个列向量为方程组的解,则k=__________,|B|=___________.
设向量组α1,α2,α4为方程组AX=0的一个基础解系,下列向量组中也是方程组AX=0的基础解系的是().
有三个盒子,第一个盒子有4个红球1个黑球,第二个盒子有3个红球2个黑球,第三个盒子有2个红球3个黑球,如果任取一个盒子,从中任取3个球,以X表示红球个数.求所取到的红球数不少于2个的概率.
设f(x)在[a,b]上连续,且f(x)>0,证明:存在ξ∈(a,b),使得
10件产品有3件次品,7件正品,每次从中任取1件,取后不放回,求下列事件的概率:第三次才取得次品;
一个盒子中5个红球,5个白球,现按照如下方式,求取到2个红球和2个白球的概率.一次性抽取4个球;
令[*]对[*]两边积分得[*]于是[*]故[*]
判断级数的敛散性.
(2011年)设总体X服从参数为λ(λ>0)的泊松分布,X1,X2,…,Xn(n≥2)为来自总体的简单随机样本,则对应的统计量T1=Xi,T2=Xi+Xn()
随机试题
颞下颌关节检查不包括
A.骨质疏松B.骨质软化C.骨质破坏D.骨质增生硬化E.骨膜增生脊柱骨质密度减低,骨小梁减少,间隙增宽,椎体上、下缘向内凹陷变扁,呈鱼脊椎样是()
堆积密度是指集料装填于容器中包括集料空隙(颗粒之间的)和孔隙(颗粒内部的)在内的单位体积的质量。()
运用动态控制原理控制施工质量时,质量目标不仅是各分部分项工程的施工质量,它还包括()
下列各项中,属于企业债权的有( )。
客户评级的评价主体是()。
简述促进中学生良好品德形成的方法。
班主任的影响力除表现为职权影响力外,更重要的表现力为()。
最著名的国产文字处理软件是
Whatdoesthespeakermean?
最新回复
(
0
)