首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明:对任一多项式p(x),一定存在x1与x2.使p(x)在(-∞,x1)与(x2,+∞)内分别严格单调.
证明:对任一多项式p(x),一定存在x1与x2.使p(x)在(-∞,x1)与(x2,+∞)内分别严格单调.
admin
2022-11-23
28
问题
证明:对任一多项式p(x),一定存在x
1
与x
2
.使p(x)在(-∞,x
1
)与(x
2
,+∞)内分别严格单调.
选项
答案
设p(x)=a
0
x
n
+a
1
x
n-1
+…+a
n-1
x+a
n
,n=1,2,…,a
0
≠0.不妨设a
0
>0.则 P’(x)=na
0
x
n-1
+(n-1)a
1
x
n-2
+…+a
n-1
. 当n为偶数时,n-1为奇数,此时有 [*] 故存在x
1
<0,x
2
>0,使得当x<x
1
时.p’(x)<0,当x>x
2
时,p’(x)>0.于是p(x)在(-∞,x
1
)内严格递减,在(x
2
,+∞)内严格递增. 当n为奇数时,n-1为偶数,则[*],故存在x
0
>0,使得当|x|>x
0
时,p’(x)>0,令x
1
=-x
0
,x
2
=x
0
,则p(x)在(-∞,x
1
)与(x
2
,+∞)内分别严格递增,
解析
转载请注明原文地址:https://kaotiyun.com/show/wlgD777K
0
考研数学一
相关试题推荐
如果各共有人对于是共同共有还是按份共有存在不同意见,且无法有证据予以证明,那么应当认定为()。
计算机科学家已经发现称为“阿里巴巴”和“四十大盗”的两种计算机病毒。这些病毒常常会侵入计算机系统文件中,阻碍计算机文件的正确储存。幸运的是,目前还没有证据证明这两种病毒能够完全删除计算机文件,所以,发现有这两种病毒的计算机用户不必担心自己的文件被清除掉。以
研究小组利用超级计算机模拟宇宙,并结合多种其他计算,证明了在我们这个加速膨胀的宇宙中,描述大尺度时空结构的因果关系网络曲线图,是一个具有显著聚类特征的幂函数曲线,和许多复杂网络如互联网、社交网、生物网络等惊人地相似。如果以上信息为真,则最能推出以
已知二次函数y=x2+bx+c的图像与x轴交于A,B两点,其顶点为K,若S△AKB=1,则b与c的关系式为()。
若a,b,c成等差数列,则二次函数y=ax2+2bx+c的图像与x轴的交点个数为()。
已知函数则=()。
函数y=ax+b和y=ax2+bx+c在同一直角坐标系内的图像大致是()。
设二次函数f(x)=ax2+bx+c图像的对称轴为x=1,且经过点(2,0),则=()。
随机试题
某学生做事比较扎实,四平八稳,自制力也很强。该生的气质类型是()
生产力和生产关系的对立统一构成( )
按一级动力学消除的药物特点为
休克性肺炎最突出的表现是
患者,男性,40岁,4小时前负重物时,右侧腹股沟斜疝嵌顿,提示疝内容物已发生缺血性坏死的表现是()
下列有关法律规范的效力等级和适用的说法哪一项是正确的?()
直接融资主要包括()。
我国最大的湖泊是:
试说明货币对内贬值与对外贬值的关系?[河北工业大学2011国际商务硕士]
I______comeherebyship,butIdidn’thaveenoughtime.
最新回复
(
0
)