首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)在[a,b]上连续,在(a,b)内可导,且f′+(a)f′-(b)<0.证明:存在ξ∈(a,b),使得f′(ξ)=0.
设f(χ)在[a,b]上连续,在(a,b)内可导,且f′+(a)f′-(b)<0.证明:存在ξ∈(a,b),使得f′(ξ)=0.
admin
2017-09-15
59
问题
设f(χ)在[a,b]上连续,在(a,b)内可导,且f′
+
(a)f′
-
(b)<0.证明:存在ξ∈(a,b),使得f′(ξ)=0.
选项
答案
不妨设f′
+
(a)>0,f′
-
(b)<0,根据极限的保号性,由f′
+
(a)=[*]>0,则存在δ>0(δ<b-a),当0<χ-a<δ时,[*]>0,即f(χ)>f(a), 所以存在χ
1
∈(a,b),使得f(χ
1
)>f(a). 同理由f′
-
(b)<0,存在χ
2
∈(a,b),使得f(χ
2
)>f(b). 因为f(χ)在[a,b]上连续,且f(χ
1
)>f(a),f(χ
2
)>f(b),所以f(χ)的最大值在(a,b)内取到,即存在ξ∈(a,b),使得f(ξ)为f(χ)在[a,b]上的最大值,故f′(ξ)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/wok4777K
0
考研数学二
相关试题推荐
[*]
设A,B均为n阶矩阵,若E-AB可逆,证明E-BA可逆.
求下列变限积分所定义函数的导数:
设A为n阶可逆矩阵,则下列结论正确的是().
设D是位于曲线下方、x轴上方的无界区域.求区域D绕x轴旋转一周所成旋转体的体积V(a);
设y1,y2是一阶线性非齐次微分方程y.+p(x)y=q(x)的两个特解,若常数λ,μ使λy1+μy2是该方程的解,λy1-μy2是该方程对应的齐次方程的解,则
已知函数f(u)具有二阶导数,且f’(0)=1,函数y=y(x)由方程y-xey-1=1所确定.设z=f(lny-sinx),
已知f(x)是微分方程xf’(x)-f(x)=满足f(1)=0的特解,则
(2000年试题,二)具有特解y1=e-x,y2=2xe-x,y3=3ex的三阶常系数齐次线性微分方程是().
设y1,y2是一阶线性非齐次微分方程y’+p(x)y=q(x)的两个特解.若常数λ,μ使λy1+μy2是该方程的解,λy1-μy2是对应的齐次方程的解,则
随机试题
西方秘书女性化是秘书这一职业本身的一种要求,换言之,西方秘书女性化的出现是因为
短暂性脑缺血发作的特点是
肾小管重吸收主要按下列哪种方式进行
根据《药品不良反应报告和监测管理办法》,药品不良反应是指
样本数据特征值中的变异系数Cv=S/χ100%,其中S代表( )。
(2008年考试真题)不是影响债券利率的因素有()。
证券公司存在下列()情形的,不会被暂停签订新的集合及定向资产管理合同。
设函数f(y)的反函数f-1(x)及f’[f-1(x)]与f’’[f-1(x)]都存在,且f-1[f-1(x)]≠0.证明:
ADreamoftheRedChamberissaid______intodozensoflanguagesinthelastdecade.
A、Itallowshimtomakealotoffriends.B、Itrequireshimtoworklonghours.C、Itenableshimtoapplytheorytopractice.D、
最新回复
(
0
)