首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设η*是非齐次方程组AX=b的一个特解,ξ1,ξ2,…,ξn—r是对应齐次方程组AX=0的基础解系. 令η0=η*,η1=ξ1+η*,η2=ξ2+η*,…,ηn—r=ξn—r+η*. 证明:非齐次方程的任一解η都可表示成η=μ0η0+μ0η
设η*是非齐次方程组AX=b的一个特解,ξ1,ξ2,…,ξn—r是对应齐次方程组AX=0的基础解系. 令η0=η*,η1=ξ1+η*,η2=ξ2+η*,…,ηn—r=ξn—r+η*. 证明:非齐次方程的任一解η都可表示成η=μ0η0+μ0η
admin
2017-07-26
78
问题
设η
*
是非齐次方程组AX=b的一个特解,ξ
1
,ξ
2
,…,ξ
n—r
是对应齐次方程组AX=0的基础解系.
令η
0
=η
*
,η
1
=ξ
1
+η
*
,η
2
=ξ
2
+η
*
,…,η
n—r
=ξ
n—r
+η
*
.
证明:非齐次方程的任一解η都可表示成η=μ
0
η
0
+μ
0
η
0
+μ
2
η
2
+…+μ
n—r
η
n—r
,其中μ
0
+μ
1
,μ
2
,…,μ
n—r
=1.
选项
答案
AX=b的任一解η可表示成 η=η
*
+k
1
ξ
1
+k
2
ξ
2
+…+k
n—r
ξ
n—r
=η
*
(1一k
1
—k
2
—…—k
n—r
)+k
1
(ξ
1
+)+k
2
(ξ
2
+η
*
)4—…+k
n—r
(ξ
n—r
+η
*
). 记 η=μ
0
η
0
+μ
1
η
1
+μ
2
η
2
+…+μ
n—r
η
n—r
, 其μ
0
+μ
1
+…+μ
n—r
=1一k
1
—k
2
—…—k
n—r
+k
1
+k
2
+…+k
n—r
=1.
解析
转载请注明原文地址:https://kaotiyun.com/show/x5H4777K
0
考研数学三
相关试题推荐
3/2
验证下列函数满足拉普拉斯方程uxx+uxy=0:(1)u=arctanx/y;(2)u=sinx×coshy+cosx×sinhy;(3)u=e-xcosy-e-ycosx.
求满足下列条件的直线方程:
设随机变量X的数学期望E(X)=μ,方差D(X)=σ2,则由切比雪夫不等式,有P{|X一μ|≥3σ)≤_____.
已知非齐次线性方程组x1+x2+x3+x4=-1;4x1+3x2+5x3-x4=-1;ax1+x2+3x3+bx4=-1;有3个线性无关的解.求a,b的值及方程组的通解.
设A和B是任意两个概率不为0的不相容事件,则下列结论中肯定正确的是().
由题设,设原积分中两部分的积分区域分别如右图所示,则原式[*]
将f(x)=arctanx展开成x的幂级数.
设y=y(x)是一向上凸的连续曲线,其上任意一点(x,y)处的曲率为,又此曲线上的点(0,1)处的切线方程为y=x+1,求该曲线方程,并求函数y(x)的极值.
设x3一3xy+y3=3确定y为x的函数,求函数y=y(x)的极值点.
随机试题
Iftheonlineserviceisfreethenyouaretheproduct,technicianssay.GoogleandFacebookmakea【C1】________collectingperson
脂肪是人体能量最重要的来源。()
简述领导者个体绩效考评的主要内容。
设f(x)是连续的奇函数,且∫01f(x)dx=1,则∫-10f(x)dx=_________.
呕血还是便血取决于出血部位的高低,出血的速度和出血量是次要的。
女性患者,甲状腺肿大伴多汗、多食、消瘦、心悸、烦躁,根据同位素扫描及血T3、T4检查,诊断为甲亢。治疗期间应定期复查()
孔子的仁爱核心是“恕”,“恕”的正确表达是()。
完成全面建设小康社会和实现现代化的历史性任务,重点和难点都在()。
Weoftentendtoassociatesmilingastheresultofapositiveeventormood.Butresearchdemonstratesthattheactofsmiling,
A、Space.B、Tranquility.C、Appliances.D、Location.B对话中甲,男士问道:“现在,最大的问题是:有噪音吗?邻居怎么样?”女士回答房子所在的地方很宁静,故B项“宁静”是男士主要考虑的问题。其他三项都不是男士主要
最新回复
(
0
)