首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
α1,α2,α3是四元非齐次线性方程组Aχ=b.的三个解向量,且R(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T.c表示任意常数,则线性方程组Aχ=b的通解χ=( ).
α1,α2,α3是四元非齐次线性方程组Aχ=b.的三个解向量,且R(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T.c表示任意常数,则线性方程组Aχ=b的通解χ=( ).
admin
2017-11-09
73
问题
α
1
,α
2
,α
3
是四元非齐次线性方程组Aχ=b.的三个解向量,且R(A)=3,α
1
=(1,2,3,4)
T
,α
2
+α
3
=(0,1,2,3)
T
.c表示任意常数,则线性方程组Aχ=b的通解χ=( ).
选项
A、
B、
C、
D、
答案
C
解析
根据线性方程组解的性质,可知
2α
1
-(α
2
+α
3
)=(α
1
-α
2
)+(α
1
-α
3
)
是非齐次线性方程组Aχ=b导出组Aχ=0的一个解.因为R(A)=3,所以Aχ=0的基础解系含4-3=1个解向量,而
2α
1
-(α
2
+α
3
)=(2,3,4,5)
T
≠0,
故是Aχ=0的一个基础解系.因此Aχ=b的通解为
α
1
+k(2α
1
一α
2
-α
3
)=(1,2,3,4)
T
+k(2,3,4,5)
T
,k∈R,
即C正确.
对于其他几个选项,A选项中
(1,1,1,1)
T
=α
1
-(α
2
+α
3
),
B选项中
(0,1,2,3)
T
=α
2
+α
3
,
D选项中
(3,4,5,6)
T
=3α
1
-2(α
2
+α
3
),
都不是Ax=b的导出组的解.所以选项A、B、D均不正确.
故应选C.
转载请注明原文地址:https://kaotiyun.com/show/xBX4777K
0
考研数学三
相关试题推荐
设A,B相互独立,只有A发生和只有B发生的概率都是,则P(A)=________。
设方程组为矩阵A的分别属于特征值λ1=1,λ2=一2,λ3=一1的特征向量.(1)求A;(2)求|A*+3E|.
设f(x,y),g(x,y)在平面有界闭区域D上连续,且g(x,y)≥0.证明:存在(ξ,η)∈D,使得
设函数f0(x)在(一∞,+∞)内连续,fn(x)=∫0xfn-1(t)df(n=1,2,…).
微分方程y’一xe-y+=0的通解为________.
设f(x)=,求曲线y=f(x)与直线y=所围成平面图形绕Ox轴旋转所成旋转体的体积.
已知α1=[一1,1,a,4]T,α2=[一2,1,5,a]T,α3=[a,2,10,1]T是4阶方阵A的3个不同特征值对应的特征向量,则a的取值为()
设p(x),q(x)与f(x)均为连续函数,f(x)≠0.设y1(x),y2(x)与y3(x)是二阶非齐次线性方程y"+p(x)y’+q(x)y=f(x)①的3个解,且则式①的通解为________.
已知f(x),g(x)连续可导,且f′(x)=g(x),g′(x)=f(x)+φ(x),其中φ(x)为某已知连续函数,g(x)满足微分方程g′(x)-xg(x)=cosx+φ(x),求不定积分∫xf″(x)dx.
令f(x)=arctanr,由微分中值定理得[*]
随机试题
计量的历史源远流长,计量的发展和社会进步联系紧密,计量的发展大体可分为_________。
在法约尔看来,参谋部主要为领导处理四个方面的问题,这不包括()
有一青年病人,大腿有一感染伤口,为防止气性坏疽,应该采取的最重要措施是
Austin—Flint杂音的发生与以下哪项有关
架子工作业时不要求的是()。
根据不同的应用场合,操作系统有哪几种类型?
遗忘只是暂时的,一旦有了正确的线索就能回忆起来。这体现了()
甲、乙签订的买卖合同约定由甲到乙处提货,但未约定提货费用1000元由谁承担,双方就此又无法达成补充协议,按照合同有关条款或交易习惯也无法确定。该1000元应()。
Whatisthewomangoingtodo?
A、Shehadmovedoutoftheoldaddress.B、Sheignoredit.C、Thelibrarydidn’ttrytoinformheraboutit.D、Thelandlordrefuse
最新回复
(
0
)