首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
α1,α2,α3是四元非齐次线性方程组Aχ=b.的三个解向量,且R(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T.c表示任意常数,则线性方程组Aχ=b的通解χ=( ).
α1,α2,α3是四元非齐次线性方程组Aχ=b.的三个解向量,且R(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T.c表示任意常数,则线性方程组Aχ=b的通解χ=( ).
admin
2017-11-09
63
问题
α
1
,α
2
,α
3
是四元非齐次线性方程组Aχ=b.的三个解向量,且R(A)=3,α
1
=(1,2,3,4)
T
,α
2
+α
3
=(0,1,2,3)
T
.c表示任意常数,则线性方程组Aχ=b的通解χ=( ).
选项
A、
B、
C、
D、
答案
C
解析
根据线性方程组解的性质,可知
2α
1
-(α
2
+α
3
)=(α
1
-α
2
)+(α
1
-α
3
)
是非齐次线性方程组Aχ=b导出组Aχ=0的一个解.因为R(A)=3,所以Aχ=0的基础解系含4-3=1个解向量,而
2α
1
-(α
2
+α
3
)=(2,3,4,5)
T
≠0,
故是Aχ=0的一个基础解系.因此Aχ=b的通解为
α
1
+k(2α
1
一α
2
-α
3
)=(1,2,3,4)
T
+k(2,3,4,5)
T
,k∈R,
即C正确.
对于其他几个选项,A选项中
(1,1,1,1)
T
=α
1
-(α
2
+α
3
),
B选项中
(0,1,2,3)
T
=α
2
+α
3
,
D选项中
(3,4,5,6)
T
=3α
1
-2(α
2
+α
3
),
都不是Ax=b的导出组的解.所以选项A、B、D均不正确.
故应选C.
转载请注明原文地址:https://kaotiyun.com/show/xBX4777K
0
考研数学三
相关试题推荐
求由方程x2+y3一xy=0确定的函数在x>0内的极值,并指出是极大值还是极小值.
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1,证明:对任意的a>0,b>0,存在ξ,η∈(0,1),使得
三元二次型f=XTAX经过正交变换化为标准形f=y12+y22一2y32,且A*+2E的非零特征值对应的特征向量为α1=,求此二次型.
设n阶矩阵A的伴随矩阵A*≠O,且非齐次线性方程组AX=b有两个不同解η1,η2,则下列命题正确的是().
设f(x)在[0,a](a>0)上非负、二阶可导,且f(0)=0,f"(x)>0,()为y=f(x),y=0,x=a围成区域的形心,证明:.
确定常数a,b,c,使得=c.
一质点从时间t=0开始直线运动,移动了单位距离使用了单位时间,且初速度和末速度都为零.证明:在运动过程中存在某个时刻点,其加速度绝对值不小于4.
设λ1,λ2是n阶矩阵A的特征值,α1,α2分别是A的对应于λ1,λ2的特征向量,则()
积分=()
设f(x)是在区间[1,+∞)上单调减少且非负的连续函数,an=一1nf(x)dx(n=1,2,…).证明:证存在;
随机试题
在Word[格式]工具栏上的段落对齐方式按钮分别为()。
石油沥青防腐作业线的工艺流程为上管、除锈、除尘、浇涂缠绕、检验和堆放。
蛋白质分子中的疏水键
患者男,37岁。诉右上后牙自发性钝痛1个月,1天前疼痛加重,较剧烈,出现夜间痛,冷热刺激加剧。视诊见2号牙深龋洞,探痛。若牙髓温度测试示剧烈持续的疼痛,最可能的诊断是
某火炮厂发生爆炸事故,造成39人死亡,49人受伤。事故基本情况是:该火炮厂是村办集体企业,由村民陈某任厂长,实行承包经营,实际上是由陈某与村民杨某合伙生产经营。后因经营亏损,陈某向杨某提出不再合伙经营,杨某同意,并提出修改合同,在合同上明确杨某也是承包人。
农村信用社对农户发放贷款利率的最高上限为中国人民银行规定的基准利率的()倍。
奥苏伯尔根据学习进行的方式把学习分为()。
Withtheworld’spopulationestimatedtogrowfromsixtoninebillionby2050,researchers,businessesandgovernmentsarealre
Spanishwomen______just4.1%ofcorporateboards,accordingtoastudybytheEuropeanProfessionalWomen’sNetwork.
Childrenwholivenearamainroadareingreaterdangerofcatchingpneumonia(肺炎)becausepollutionfrompassingtrafficdamag
最新回复
(
0
)