首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(87年)问a、b为何值时,线性方程组 有唯一解、无解、有无穷多组解?并求出有无穷多解时的通解.
(87年)问a、b为何值时,线性方程组 有唯一解、无解、有无穷多组解?并求出有无穷多解时的通解.
admin
2017-04-20
34
问题
(87年)问a、b为何值时,线性方程组
有唯一解、无解、有无穷多组解?并求出有无穷多解时的通解.
选项
答案
将方程组的增广矩阵[*]用初等行变换化成阶梯形: [*] 于是可知(记方程组的系数矩阵为A) 当a≠1时,r(A)=[*]=4,因而方程组有唯一解. 当a=1且b≠一1时,r(A)=2,[*]=3,故方程组无解. 当a=1且b=一1时,r(A)=[*]=2,故方程组有无穷多解.此时,将[*]进一步化成简化行阶梯形 [*] 故得方程组的用自由未知量表示的通解为 [*] 用对应齐次线性方程组的基础解系表示的通解为 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/xMu4777K
0
考研数学一
相关试题推荐
差分方程yt+1-yt=t2t的通解为_______.
设幂级数anxn在(-∞,+∞)内收敛,其和函数y(x)满足y"-2xy’-4y=0,y(0)=0,y’(0)=1.求y(x)的表达式.
设矩阵A满足A2+A-4E=0,其中E为单位矩阵,则(A-E)-1=__________.
设A为n阶非奇异矩阵,α为n维列向量,b为常数,记分块矩阵其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵.计算并化简PQ;
已知,二次型f(x1,x2,x3)=xT(ATA)x的秩为2.(1)求实数a的值;(2)求正交变换x=Qy将f化为标准形.
设3阶实对称矩阵A的特征值是1,2,3,矩阵A的属于特征值1,2的特征向量分别是α1=(﹣1,﹣1,1)T,α2=(1,﹣2,﹣1)T.(I)求A的属于特征值3的特征向量;(Ⅱ)求矩阵A.
用集合的描述法表示下列集合:(1)大于5的所有实数集合.(2)方程x2-7x+12=0的根的集合.(3)圆x2+y2=25内部(不包含圆周)一切点的集合.(4)抛物线y=x2与直线x-y=0交点的集合.
求微分方程(3x2+2xy-y2)dx+(x2-2xy)dy=0的通解.
设n元线性方程组Ax=b,其中当a为何值时,该方程组有唯一解,并求x1;
已知非齐次线性方程组有3个线性无关的解.证明方程组系数矩阵A的秩r(A)=2;
随机试题
背景某办公大楼工程,地下为3层,地上20层。裙房4层,檐高27m,报告厅混凝土结构局部层高8m,演艺厅钢结构层高8m。框架一剪力墙结构,基础埋深12m。某施工总承包单位中标后成立了项目部组织施工。施工过程中发生了如下事件:事件一:项目部编制了《安全生产
律师有哪些情形,司法行政机关可以吊销其律师执业证书
简述加里培林的智力技能的阶段。
右冠状动脉
某工程在9月10日发生了地震灾害迫使承包人停止施工。9月15日发包人与承包人共同检查工程的损害程度,并一致认为损害程度严重,需要拆除重建。9月17日发包人将依法单方解除合同的通知送达承包人,9月18日发包人接到承包人同意解除合同的回复。依据我国《合同法》的
会计基础工作规范规定,除出纳人员不得兼任稽核、会计档案和收入、费用、债权债务的记账工作外,会计工作岗位设置可以()。
出口监管仓库可以下设分库。
对于投资企业而言,实际收到的股票股利不作账务处理,但应在备查簿中登记。()
办公室的明度指标应能给人以()。
甲型H1N1流感是由变异后的新型H1N1流感病毒所引起的急性呼吸道传染病。以下对甲型H1N1流感的认识错误的是()。
最新回复
(
0
)