首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
若任一n维非零向量都是,;阶矩阵A的特征向量,则A是数量矩阵.
若任一n维非零向量都是,;阶矩阵A的特征向量,则A是数量矩阵.
admin
2016-10-20
76
问题
若任一n维非零向量都是,;阶矩阵A的特征向量,则A是数量矩阵.
选项
答案
因为任一n维非零向量都是A的特征向量,所以A有n个线性无关的特征向量,从而A可以对角化. 特别地,n维单位向量ε
i
=(0,…,1,…,0)
T
,i=1,2,…,n,是A的特征向量. 令P=(e
1
,e
2
,…,e
n
),则有P=E,且 A=P
-1
AP=A=[*] 若A的特征值λ
1
≠λ
2
,则由于λ
1
,λ
2
分别是λ
1
,λ
2
的特征向量,那么e
1
+e
2
不再是A的特征向量,这与已知条件“任一非零向量都是特征向量”相矛盾,同理可知λ
1
=λ
2
=…=λ,即A是数量矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/xYT4777K
0
考研数学三
相关试题推荐
设矩阵Am×n的秩为r(A)=m<n,Em为m阶单位矩阵,下列结论中正确的是().
设矩阵Am×n的秩为r(A)=m<n,Em为m阶单位矩阵,下列结论中正确的是().
已知向量组α1=(t,2,1),α2=(2,t,0),α3=(1,-1,1),试讨论:(1)t为何值时,向量组α1,α2,α3线性相关?(2)t为何值时,向量组α1,α2,α3线性无关?
设α1,α2,…,αm-1(m≥3)线性相关,向量组α2,…,αm线性无关,试讨论αm能否由α1,α2,…,αm-1线性表示?
设A,B是同阶正定矩阵,则下列命题错误的是().
设向量组α1,α2,…,αm线性无关,向量β1可用它们线性表示,β2不能用它们线性表示,证明向量组α1,α2,…,αm,λβ1+β2(λ为常数)线性无关.
如果n个事件A1,A2,…,An相互独立,证明:将其中任何m(1≤m≤n)个事件改为相应的对立事件,形成的新的n个事件仍然相互独立;
设向量组B:β1,β2,…,βr能由向量组A:α1,α2,…,αs线性表示为:其中,K为r×s矩阵,且向量组A线性无关,证明:向量组B线性无关的充要条件是矩阵K的秩r(K)=r.
某商店收进甲厂生产的产品30箱,乙厂生产的同种产品20箱,甲厂产品每箱装100个,废品率为0.06,乙厂产品每箱120个,废品率为0.05.若将所有产品开箱混装,任取一个其为废品的概率
随机试题
库存物资因自然因素造成短量时,其短量部分在规定的合理损耗标准以内按()处理。
下列资料属数值变量的是
股票的分类中,按市场功能划分,股票市场可分为()和()。按市场的组织形式划分,股票市场可分为()和()。
事故调查组一般由安全生产监管部门、公安部门、行政监察部门、工会组织等部门的人员组成。事故调查组的主要职责不包括()。
态度型培训法主要针对行为调整和心理训练,具体方法包括()。
TheestablishmentoftheThirdReichinfluencedeventsinAmericanhistorybystartingachainofeventswhichculminatedinwar
心理测验的优点有()
已知A=,则A与B()
ThewetvolcanicashthatcoveredaMayavillageinCentralAmericainaboutAD595coatedandpre-servedeverydayobjectsbean
AlthoughCoca-ColaCo:spentnearly$2billionlastyearadvertisingitsvariousbrandsaroundtheglobe,itsawitsshareoft
最新回复
(
0
)