首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
若任一n维非零向量都是,;阶矩阵A的特征向量,则A是数量矩阵.
若任一n维非零向量都是,;阶矩阵A的特征向量,则A是数量矩阵.
admin
2016-10-20
81
问题
若任一n维非零向量都是,;阶矩阵A的特征向量,则A是数量矩阵.
选项
答案
因为任一n维非零向量都是A的特征向量,所以A有n个线性无关的特征向量,从而A可以对角化. 特别地,n维单位向量ε
i
=(0,…,1,…,0)
T
,i=1,2,…,n,是A的特征向量. 令P=(e
1
,e
2
,…,e
n
),则有P=E,且 A=P
-1
AP=A=[*] 若A的特征值λ
1
≠λ
2
,则由于λ
1
,λ
2
分别是λ
1
,λ
2
的特征向量,那么e
1
+e
2
不再是A的特征向量,这与已知条件“任一非零向量都是特征向量”相矛盾,同理可知λ
1
=λ
2
=…=λ,即A是数量矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/xYT4777K
0
考研数学三
相关试题推荐
设向量组(Ⅰ):α1=(α11,α21,α31)T,α2=(α12,α22,α32)T,α3=(α12,α23,α33)T,向量组(Ⅱ):β1=(α11,α21,α31,α41)T,β2=(α12,α22,α32,α42)T,β3=(α12,α2
设α1,α2,…,αm-1(m≥3)线性相关,向量组α2,…,αm线性无关,试讨论αm能否由α1,α2,…,αm-1线性表示?
加工一个产品要经过三道工序,第一、二、三道工序不出废品的概率分别为0.9、0.95、0.8,若假定各工序是否出废品是独立的,求经过三道工序生产出的是废品的概率.
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
设向量组α1,α3,α3线性无关,问常数a,b,c满足什么条件时,aα1-α2,bα2-α3,cα3-α1线性相关?
如果n个事件A1,A2,…,An相互独立,证明:将其中任何m(1≤m≤n)个事件改为相应的对立事件,形成的新的n个事件仍然相互独立;
设n阶实对称矩阵A满足条件A2+6A+8E=O,且A+tE是正定矩阵,则t的取值范围为_______.
设A与B均为n,阶矩阵,且A与B合同,则().
某企业为生产甲、乙两种型号的产品投入的同定成本为10000(万元).设该企业生产甲、乙两种产品的产量分别为x(件)和y(件),且这两种产品的边际成本分别为20+x/2(万元/件)与6+y(万元/件).求总产量为50件且总成本最小时甲产品的边际成本,并解
设生产某种产品必须投入两种要素,x1和x2分别为两要素的投入量,Q为产出量,若生产函数为Q=2x1αx2β,其中α,β为正常数,且α+β=1.假设两种要素的价格分别为ρ1和ρ2,试问:当产出量为12时,两要素各投入多少可以使得投入总费用最小?
随机试题
仲裁裁决结案的案卷,保存期不少于()年。
双绞线分为________________。
下列级数中,收敛的级数是()
以下为反映心脏收缩功能的指标,但应除外
爆炸是物质系统的一种极为迅速的物理的或化学的能量释放或转换过程,是系统蕴藏或瞬间形成的大量能量在有限的体积和极端的时间内,突然释放或转换的现象,爆炸现象最主要的特征是()。
不属于金属基复合材料的是()。
设f(x)在[-a,a](a>0)上有四阶连续的导数,且存在.写出f(x)的带拉格朗日余项的麦克劳林公式.
CPU中有一个程序计数器(又称指令计数器),它用于存放______。
软件生命周期中的活动不包括( )。
某带链的队列初始状态为front=rear=NULL,经过一系列正常的入队与退队操作后,front=10,rear=5。此时,该队列中的元素个数为()
最新回复
(
0
)