首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
确定常数a,使向量组α1=(1,1,a)T,α2=(1,a,1)T,α3=(a,1,1)T可由向量组β1=(1,1,a)T,β2=(一2,a,4)T,β3=(一2,a,a)T线性表示,但向量组β1,β2,β3不能由向量组α1,α2,α3线性表示。
确定常数a,使向量组α1=(1,1,a)T,α2=(1,a,1)T,α3=(a,1,1)T可由向量组β1=(1,1,a)T,β2=(一2,a,4)T,β3=(一2,a,a)T线性表示,但向量组β1,β2,β3不能由向量组α1,α2,α3线性表示。
admin
2017-07-10
86
问题
确定常数a,使向量组α
1
=(1,1,a)
T
,α
2
=(1,a,1)
T
,α
3
=(a,1,1)
T
可由向量组β
1
=(1,1,a)
T
,β
2
=(一2,a,4)
T
,β
3
=(一2,a,a)
T
线性表示,但向量组β
1
,β
2
,β
3
不能由向量组α
1
,α
2
,α
3
线性表示。
选项
答案
记A=(α
1
,α
2
,α
3
),B=(β
1
,β
2
,β
3
)。因为β
1
,β
2
,β
3
不能由α
1
,α
2
,α
3
线性表示,所以r(A)<3(若r(A)=3,则任何三维向量都可以由α
1
,α
2
,α
3
线性表示),从而 [*] 即a=一2或1。当a=一2时 [*] 考虑线性方程组Bx=α
2
。因为系数矩阵的秩为2,增广矩阵的秩为3,所以线性方程组Bx=α
2
无解,即α
2
不能由β
1
,β
2
,β
3
线性表出,这与题中的已知条件矛盾,故a=一2不合题意。 当a=1时,α
1
=α
2
=α
3
=β
1
=(1,1,1),则α
1
=α
2
=α
3
=β
1
+0.β
2
+0.β
3
,说明α
3
,α
2
,α
3
可由β
1
,β
2
,β
3
线性表示;而方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=β
2
无解(系数矩阵的秩为1,增广矩阵的秩为2),所以α
2
不能由α
1
,α
2
,α
3
线性表示。故a=1符合题意。
解析
转载请注明原文地址:https://kaotiyun.com/show/xet4777K
0
考研数学二
相关试题推荐
[*]
设区域D是由直线y=x-1,y=x+1,x=2及坐标轴围成的区域(图3-8).(X,Y)服从区域D上的均匀分布.求条件密度函数fY|X(y|x)和fX|Y(x|y).
求下列函数的偏导数:
计算下列二重积分:
求微分方程yy"+y’2=0满足初始条件y(1)=y’(1)=1的特解。
设L是一条平面曲线,其上任意一点P(x,y)(x>0)到坐标原点的距离,恒等于该点处的切线在y轴上的截距,且L经过点(1/2,0).求L位于第一象限部分的一条切线,使该切线与L以及两坐标轴所围图形的面积最小.
设三阶实对称矩阵A的特征值是1,2,3;矩阵A的属于特征值1,2的特征向量分别是α1=(-1,-1,1)T,α2=(1,-2,-1)T.求A的属于特征值3的特征向量.
已知二次型f(x1,x2,x3)=4x2-3x3+4x1x2-4x1x3+8x2x3.用正交变换把二次型f化为标准形,并写出相应的正交矩阵.
因为y=ex在实数域内严格单调增加,又在区间[-2,-1]上1≤-x3≤8,-8≤x3≤-1,所以在区间[-2,-1]上e≤e-x3≤e8,e-8≤ex3≤e-1<e,由定积分的性质知[*]
二元函数f(x,y)在点(x0,y0)处两个偏导数f’(x0,y0),fx’(x0,y0)存在是f(x,Y)在该点连续的
随机试题
下列病因中因产热过多引起体温升高的是【】
毛泽东关于党的建设最核心的内容和最主要的特点是()
关于尿干化学分析仪检测原理,错误的是
A.羚羊感冒片B.九味羌活丸C.桑菊感冒片D.藿香正气水E.午时茶颗粒男,41岁,症见发热恶风、头痛头晕、咳嗽、胸闷、咽喉肿痛,经诊断,为流行性感冒属风热证,宜选用()。
[背景资料]某建设单位投资兴建住宅楼,建筑面积12000m2,钢筋混凝土框架结构,地下一层,地上七层,土方开挖范围内有局部滞水层。经公开招投标,某施工总承包单位中标。双方根据《建设工程施工合同(示范文本)》(GF—2013—0201)签订施工承包合同,合
《中华人民共和国合同法》规定,下列行为构成缔约过失责任的有()。
下列属于膳食调查报告的主体内容的是()
与问题类型相对应,问题解决也有两种类型,即______和______。
(2010年福建.春.97)请选择你认为最为合理的一项,来填补所给数列的空缺项,使之符合原数列的排列规律:
下面属于软件设计阶段产生的文档的是()
最新回复
(
0
)