首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,+∞)内二阶可导,f(0)=一2,f’(0)=1,f"(x)≥0.证明:f(x)=0在(0,+∞)内有且仅有一个根.
设f(x)在[0,+∞)内二阶可导,f(0)=一2,f’(0)=1,f"(x)≥0.证明:f(x)=0在(0,+∞)内有且仅有一个根.
admin
2015-07-10
34
问题
设f(x)在[0,+∞)内二阶可导,f(0)=一2,f’(0)=1,f"(x)≥0.证明:f(x)=0在(0,+∞)内有且仅有一个根.
选项
答案
因为f"(x)≥0,所以f’(x)单调不减,当x>0时,f’(x)≥f’(0)=1. 当x>0时,f(x)一f(0)=f’(ξ)x,从而f(x)≥f(0)+x,因为[*] 由f(x)在[0,+∞)上连续,且f(0)=一2<0,[*]=+∞,则f(x)=0在(0,+∞)内至少有一个根,又由f’(x)≥1>0,得方程的根是唯一的.
解析
转载请注明原文地址:https://kaotiyun.com/show/xkU4777K
0
考研数学三
相关试题推荐
2022年北京冬残奥会单板滑雪项目共设2个大项,分别是()。
2022年6月27日,中共中央宣传部举行“中国这十年”系列主题新闻发布会,邀请等介绍新时代的乡村振兴有关情况。邓小刚表示,党的十八大以来,我国粮食和重要农产品供给稳定,保障国家粮食安全的基础愈加夯实。粮食产量连续7年稳定在()万亿斤以上
国家主席习近平2021年12月22日下午在中南海瀛台会见来京述职的香港特别行政区行政长官林郑月娥。习近平指出,实践证明,()符合“一国两制”原则,符合香港实际,为确保“一国两制”行稳致远、确保香港长期繁荣稳定提供了(
党的十八大以来,党中央统筹国内国际两个大局,观大势、谋大事,加强外交顶层设计和战略谋划,开展一系列重大外交行动,提出许多重大对外战略思想,将大国、周边、发展中国家、多边工作密切结合,推动了与各方关系全面发展,打开了外交工作新局面,展示了我国外交新气象。我国
在抗击新冠肺炎疫情中,不论是医护人员还是民警辅警,不论是社区工作者、下沉干部还是志愿者,在关键时刻冲得上去,在危难关头豁得出来,用行动书写着担当,用辛劳诠释着社会主义职业道德。社会主义职业道德最高层次的要求是
这次新冠肺炎疫情,是新中国成立以来在我国发生的传播速度最快.感染范围最广、防控难度最大的一次重大突发公共卫生事件。对我们来说,这是一次危机,也是一次大考。实践证明,党中央对疫情形势的判断是准确的,各项工作部署是及时的,采取的举措是有力有效的。防控工作取得的
加工一个产品要经过三道工序,第一、二、三道工序不出废品的概率分别为0.9、0.95、0.8,若假定各工序是否出废品是独立的,求经过三道工序生产出的是废品的概率.
若函数f(x)在(a,b)内具有二阶导数,且f(x1)=f(x2)=f(x3),其中a<x1<x2<x3<b,证明:在(x1,x3)内至少有一点ε,使得f〞(ε)=0.
设f(x)是处处可导的奇函数,证明:对任-b>0,总存在c∈(-b,b)使得fˊ(c)=f(b)/b.
有一下凸曲线L位于xOy面的上半平面内,L上任一点M处的法线与x轴相交,其交点记为B,如果点M处的曲率半径始终等于线段MB之长,并且L在点(1,1)处的切线与y轴垂直,试求L的方程.
随机试题
Windows7是一种________。
下列关于鼻周期的说法错误的是
甲乙二国建立正式外交关系数年后,因两国多次发生边境冲突,甲国宣布终止与乙国的外交关系。根据国际法相关规则,下列哪一选项是正确的?(2010年卷一第29题)
“有借必有贷,借贷必相等”,所有经济业务的发生,都会引起会计恒等式两边同方向发生变化。()
张某、李某、丙有限责任公司和丁有限责任公司共同出资设立了A有限合伙企业,丙、丁两家公司为有限合伙人。该企业在经营过程中出现以下问题:(1)丙公司认为自己出资最多,应当成为合伙企业事务执行人,但张某和李某不同意,最后决定由张某担任合伙企业事务执行人
归结一篇文章的主要内容称之为()。
医生根据病人的体温、血压、心电图等检查资料为病患确诊,这属于下列哪种思维特性?()。
Thephrase"keeppeopleonedge"(Paragraph1)probablymeansto______.Whichofthefollowingistrueaboutthepresentecono
设f(x)在,求f(x)在[1,+∞)的最大值。
关于国际标准化组织的描述中,正确的是()。
最新回复
(
0
)