首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3,β1,β2均为四维列向量,且|A|=|α1,α2,α3,β1|=m,|B|=|α1,α2,β2,α3|=n,则|α3,α2,α1,(β1+β2)|=( )
设α1,α2,α3,β1,β2均为四维列向量,且|A|=|α1,α2,α3,β1|=m,|B|=|α1,α2,β2,α3|=n,则|α3,α2,α1,(β1+β2)|=( )
admin
2018-05-17
47
问题
设α
1
,α
2
,α
3
,β
1
,β
2
均为四维列向量,且|A|=|α
1
,α
2
,α
3
,β
1
|=m,|B|=|α
1
,α
2
,β
2
,α
3
|=n,则|α
3
,α
2
,α
1
,(β
1
+β
2
)|=( )
选项
A、m+n。
B、m一n。
C、一(m+n)。
D、n—m。
答案
D
解析
由行列式运算法则|α
3
,α
2
,α
1
,(β
1
+β
2
)|=|α
3
,α
2
,α
1
,β
1
|+|α
3
,α
2
,α
1
,β
2
|,且
|α
3
,α
2
,α
1
,β
2
|=一|α
1
,α
2
,α
3
,β
2
|=|α
1
,α
2
,β
2
,α
3
|=|B|=n,
故可得
|α
3
,α
2
,α
1
,(β
1
+β
2
)|=一|A|+|B|=一m+n。
转载请注明原文地址:https://kaotiyun.com/show/xrk4777K
0
考研数学二
相关试题推荐
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向量,其α2,α3,α4线性无关,α1=2α2-α3,如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
设A是n阶实对称矩阵,P是n阶可逆矩阵,已知n维列向量a是A的属于特征值A的特征向量,则矩阵(P-1AP)T属于特征值λ的特征向量是().
设向量组a1,a2,a3线性相关,向量组a2,a3,a4线性无关,问:(Ⅰ)a1能否由a2,a3,线性表出?证明你的结论.(Ⅱ)a4能否由a1,a2,a3铴线性表出?证明你的结论.
设A为n阶非奇异矩阵,a是n维列向量,b为常数,(I)计算PQ;(Ⅱ)证明PQ可逆的充分必要条件是aTA-1a≠b.
设a1,a2,…,as均为n维向量,下列结论不正确的是().
设A为三阶矩阵,A的特征值为λ1=1,λ22,λ3=3,其对应的线性无关的特征向量分别为,求Anβ.
设向量组a1,a2,a3线性无关,且a1+aa2+4a3,2a1+a2-a3,a2+a3线性相关,则a=__________.
设三阶矩阵A=,三维列向量a=(a,1,1)T,已知Aa与a线性相关,则a=__________.
随机试题
甲有父亲、母亲、配偶(机关干部)、儿子(工程师)、女儿(小学音乐教师)各一人。甲去世,留有遗产,房屋6间、荷款5000元、古字画10件和钢琴一架。甲生前自书遗嘱指定:房产归妻子和儿女继承,古字画赠给文物部门。对存款和钢琴遗嘱未作处理。现甲的女儿提出要将钢琴
链霉素急性中毒出现口唇、面部及四肢麻木感,严重时出现呼吸抑制,解救的药物是( )
(2009年)在如下关系信号和信息的说法中,正确的是()。
地下防水工程施工期间,明挖法的基坑必须保持地下水位至少稳定在基底()m以下。
转增股本,投资者持有的股票数会增加。()
欧美发达国家的保险实践表明,通常购买保险产品是有效的税收筹划方法。()
如果中国政府在美国纽约发行一笔美元债券,则该笔债券属于()的范畴。
21世纪以来形成的全面营销观念主要涉及的方面不包括()。
我国校对工作的基本制度包括()等。
ThougheverymorningIqueue(排队)atthebusstopveryearly,Iamoften(41)forschool.Thereasonisthatthereare(42)
最新回复
(
0
)