首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶矩阵,α1,α2为A的分别属于特征值一1,1的特征向量,向量α3满足Aα3=α2+α3。 证明α1,α2,α3线性无关;
设A为三阶矩阵,α1,α2为A的分别属于特征值一1,1的特征向量,向量α3满足Aα3=α2+α3。 证明α1,α2,α3线性无关;
admin
2018-04-12
101
问题
设A为三阶矩阵,α
1
,α
2
为A的分别属于特征值一1,1的特征向量,向量α
3
满足Aα
3
=α
2
+α
3
。
证明α
1
,α
2
,α
3
线性无关;
选项
答案
方法一:假设α
1
,α
2
,α
3
线性相关。因为α
1
,α
2
是属于不同特征值的特征向量,故α
1
,α
2
线性无关,则α
3
可由α
1
,α
2
线性表出,不妨设α
3
=l
1
α
1
+l
2
α
2
,其中l
1
,l
2
不全为零。(若l
1
,l
2
同时为0,则α
3
=0,由Aα
3
=α
2
+α
3
可知α
2
=0,而特征向量都是非零向量,矛盾)由于Aα
1
=一α
1
,Aα
2
=α
2
,则 Aα
3
=α
2
+α
3
=α
2
+l
1
α
1
+l
2
α
2
。 又Aα
3
=A(l
1
α
1
+l
2
α
2
)=一l
1
α
1
+l
2
α
2
,那么 一l
1
α
1
+l
2
α
2
=α
2
+l
1
α
1
+l
2
α
2
, 整理得2l
1
α
1
+α
2
=0。则α
1
,α
2
线性相关,矛盾。所以α
1
,α
2
,α
3
线性无关。 方法二:设存在数k
1
,k
2
,k
3
,使得 k
1
α
1
+k
2
α
2
+k
3
α
3
=0, (1) 用A左乘(1)的两边并由Aα
1
=一α
1
,Aα
2
=α
2
得 -k
1
α
1
+(k
2
+k
3
)α
2
+k
3
α
3
=0, (2) (1)一(2)得 2k
1
α
1
—k
3
α
2
=0, (3) 因为α
1
,α
2
是A的属于不同特征值的特征向量,所以α
1
,α
2
线性无关,从而k
1
=k
3
=0,代入(1)得k
2
α
2
=0,又由于α
2
≠0,所以k
2
=0,故α
1
,α
2
,α
3
线性无关。
解析
转载请注明原文地址:https://kaotiyun.com/show/xxk4777K
0
考研数学二
相关试题推荐
[*]
曲线的渐近方程为________.
设函数y=y(x)由方程2xy=x+y所确定,则=________.
设函数f(x)在(-∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2-4),若对任意的x都满足f(x)=kf(x+2),其中k为常数.问k为何值时,f(x)在x=0处可导.
设函数f(u)具有二阶连续导数,而z=f(exsiny)满足方程求f(u).
设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示.将β1,β2,β3用α1,α2,α3线性表示.
曲线y=x(x-1)(2-x)与x轴所围成的图形的面积可表示为().
(Ⅰ)证明积分中值定理:设f(x)在[a,b]上连续,则存在ξ∈[a,b],使∫abf(x)dx=f(ξ)(b-a);(Ⅱ)若φ(x)有二阶导数,且满足φ(2)>φ(1),φ(2)>∫23φ(x)dx,证明至少存在一点ξ∈(1,3),使得φ’’(ζ)
按第一行展开[*]得到递推公式D5一D4=-x(D4-D3)一…=-x3(D2-D1).由于[*]=1一x+x2,D1=1一x,于是得[*]容易推出D5=一x5+x4一x2+D2=一x5+x4一x3+x2一x+1.
求函数的间断点,并指出其类型.
随机试题
Alltheinformationwehavecollectedinrelationtothatcase______verylittle.
A.支原体肺炎B.金黄色葡萄球菌肺炎C.腺病毒肺炎D.肺炎链球菌肺炎E.呼吸道合胞病毒肺炎婴幼儿,持续高热、中毒症状重,喘憋明显,用抗生素治疗无效,病程第7天出现心力衰竭的疾病是
下列哪项符合二度Ⅰ型房室传导阻滞的心电图表现
葡萄胎的说法,正确的是
下列纠纷中诉讼时效期间为1年的有( )。
19世纪法国学者利托尔诺认为,人类的教育起源于动物界的生存本能活动。()
领导者要敢于和善于破旧立新,推陈出新,要有永不满足的态度,这属于现代领导的()。
下列选项中,()不属于日本在东北推行的殖民统治。
设100件产品中有5件次品,从中随机取20件,求抽到次品数X的分布律.
Amongstthemostpopularbookswrittentodayarethosewhichareusuallyclassifiedassciencefiction.Hundredsoftitlesare【C
最新回复
(
0
)