首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二维随机变量(X,Y)服从二维正态分布,则随机变量ξ=X+Y与η=X—Y不相关的充分必要条件为( ).
设二维随机变量(X,Y)服从二维正态分布,则随机变量ξ=X+Y与η=X—Y不相关的充分必要条件为( ).
admin
2016-12-16
62
问题
设二维随机变量(X,Y)服从二维正态分布,则随机变量ξ=X+Y与η=X—Y不相关的充分必要条件为( ).
选项
A、E(X)=E(Y)
B、E(X
2
)一(E(X))
2
=E(Y
2
)一(E(Y))
2
C、E(X
2
)=E(Y
2
)
D、E(X
2
)+(E(X))
2
=E(Y
2
)+(E(X))
2
答案
B
解析
X,Y不相关的充要条件有:
(1)E(XY)=E(X).E(Y);
(2)D(X+Y)=D(X)+D(Y);
(3)cov(X ,Y)=0;
(4)ρ
xy
=0.
本例使用条件cov(X,Y)=0更方便.由
E(ξη)=E(X
2
一Y
2
)=E(X
2
)一E(Y
2
),
而 ξ=X+Y,η=X一Y
则 E(ξ)=E(X)+E(Y),E(η)=E(X)一E(Y),
于是 cov(ξ,η)一E(X
2
)一E(Y
2
)一(E(X)+E(Y))(E(X)一E(Y))
=E(X
2
)一(E(X))
2
一(E(P)一(E(Y))
2
)+E(X)E(Y)一E(X)E(Y)
=D(X)一D(Y).
因此cov(ξ,η)=0的充要条件是D(X)=D(Y).仅(B)入选.
转载请注明原文地址:https://kaotiyun.com/show/y6H4777K
0
考研数学三
相关试题推荐
在一通信渠道中,能传送字符AAAA,BBBB,CCCC三者之一,由于通信噪声干扰,正确接收到被传送字母的概率为0.6,而接收到其他两个字母的概率均为0.2,假设前后字母是否被歪曲互不影响.若收到字符为ABCA,问被传送字符为AAAA的概率是多大?
互不相容事件与对立事件的区别何在?说出下列各对事件之间的关系:x>20与x
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0.证明:对任何a∈[0,1],有
反常(广义)积分中发散的是
设随机变量X和Y,相互独立,且均服从参数为1的指数分布,V=min(X,Y),U=max(X,Y)求(1)随机变量V的概率密度fv(v);(2)E(U+V).
设随机变量X服从正态分布N(0,1),对给定的α∈(0,1),数uα满足P{X>uα}=α,若P{|x|<x}=α,则x等于().
设函数y=y(x)往(-∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数.求变换后的微分方程满足初始条件y(0)=0,y’(0)=3/2的解.
投掷一枚硬币三次,观察三次投掷出现正反面情况,比如一种可能结果为HTT(表示第一次出现的是正面,第二次和第三次出现的都是反面).写出所有可能结果构成的样本空间Ω;
计算曲面积分,∑为:
微分方程y"+y=cosx的一个特解的形式为y"=().
随机试题
Itisthedutyofeverymantowork.Thelifeofalazymanis【21】tohimselfortoothers.Themanwhoistoo【22】toworkisthe
本病属中医何病范畴辨证为何证型
下列具有较强局麻作用的镇咳药是
商业助学贷款发放所遵循的原则不包括()。
新课程结构的特点有__________、__________、__________。
对问题提出超乎寻常的、独特新颖的见解,属于发散思维的()品质。
假设市场上某种商品有两种品牌A和B,当前的市场占有率各为50%。根据历史经验估计,这种商品当月与下月市场占有率的变化可用转移矩阵P来描述:其中,p(A→B)是A的市场占有份额中转移给B的概率,依次类推。这样。2个月后的这种商品的市场占有率变化为
在计算机内部,大写字母“G”的ASCII码为“1000111”,大写字母“K”的ASCII码为()
Whatdoesthemanproposetodofirst?
A、Hewentforatourofthecity.B、Hereadaboutit.C、Hewroteanarticleaboutit.D、Heworkedthereasaguide.B选项都和男士有关。I
最新回复
(
0
)