首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)在[0,1]连续,在(0,1)可导,f(0)=0,0<f′(χ)<1(χ∈(0,1)),求证:[∫01f(χ)dχ]2>∫01f3(χ)dχ.
设f(χ)在[0,1]连续,在(0,1)可导,f(0)=0,0<f′(χ)<1(χ∈(0,1)),求证:[∫01f(χ)dχ]2>∫01f3(χ)dχ.
admin
2016-10-21
38
问题
设f(χ)在[0,1]连续,在(0,1)可导,f(0)=0,0<f′(χ)<1(χ∈(0,1)),求证:[∫
0
1
f(χ)dχ]
2
>∫
0
1
f
3
(χ)dχ.
选项
答案
即证[∫
0
1
f(χ)dχ]
2
>∫
0
1
f
3
(χ)dχ>0.考察F(χ)=[∫
0
χ
f(t)dt]
2
-∫
0
χ
f
3
(t)dt, 若能证明F(χ)>0(χ∈(0,1])即可.这可用单调性方法. 令F(χ)=[∫
0
χ
f(t)dt]
2
-∫
0
χ
f
3
(t)dt,易知F(χ)在[0,1]可导,且 F(0)=0,F′(χ)=f(χ)[2∫
0
χ
f(t)dt-f
2
(χ)]. 由条件知,f(χ)在[0,1]单调上升,f(χ)>f(0)=0(χ∈(0,1]),从而F′(χ)与g(χ)=2∫
0
χ
f(t)dt-f
2
(χ)同号.再考察 g′(χ)=2f(χ)[1-f′(χ)]>0(χ∈(0,1)), g(χ)在[0,1]连续,于是g(χ)在[0,1]单调上升,g(χ)>g(0)=0(χ∈(0,1]),也就有F′(χ)>0(χ ∈(0,1]),即F(χ)在[0,1]单调上升,F(χ)>F(0)=0(χ∈(0,1]).因此 F(1)=[∫
0
χ
f(χ)dχ]
2
-∫
0
1
f
3
(χ)dχ>0. 即结论成立.
解析
转载请注明原文地址:https://kaotiyun.com/show/yPt4777K
0
考研数学二
相关试题推荐
当x→0时,下列无穷小中,哪个是比其他三个更高阶的无穷小().
[*]
证明
设函数f(u)具有二阶连续导数,而z=f(exsiny)满足方程=e2xz,求f(u).
已知函数f(x,y)在点(0,0)的某个邻域内连续,且,则________。
设A为n阶可逆矩阵,则下列结论正确的是().
设A为n阶非零矩阵,E为n阶单位矩阵.若A3=0,则
对(I)中的任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
设向量组α1=(1,1,1,3)T,α2=(-1,-3,5,1)T,α3=(3,2,-1,P+2)T,α4=(-2,-6,10,p)T.p为何值时,该向量组线性无关?并在此时将向量α=(4,1,6,10)T用α1,α2,α3,α4线性表出.
随机试题
下列哪组纠正试验可以诊断血友病
用盈余公积弥补亏损时,应借记“盈余公积”科目,贷记“本年利润”科目。()
统计指标按作用和表现形式不同,可分为()。
Keeppracticingandyou______yourEnglish.
某教师在给学生讲述改革开放成就的同时,还鼓励学生通过“我和爸爸比童年”活动直观地了解改革开放以来社会的发展变化,该教师运用的德育原则是()。
在我国,随着人民生活水平的提高,冬季避寒旅游逐渐流行起来。据研究,一月平均气温一般在10℃到22℃之间的地区适合作冬季避寒旅游的目的地。东北某市花费420万元巨资,从深山引进4200多株大树,因“水土不服”已有400多株死掉,其余的要靠麻绳捆绑、支架支
设f(x)在[0,1]上二阶可导,且f(0)=f′(0)=f(1)=f′(1)=0.证明:方程f″(x)-f(x)=0在(0,1)内有根.
域名ABC.XYZ.COM.CN中主机名是()。
Perhapsmorethananythingelse,scientistsareeagertofindoutifMartianlifeexistedinthepast—orstillexists.【C1】______
TopicAPart-timeJobIHaveDoneForthispart,youareallowed30minutestowriteashortessayentitledAPart-timeJobI
最新回复
(
0
)