首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
自考
设η*为非齐次线性方程组Ax=b的一个特解,ξ1,ξ2,…,ξn-r是其导出组Ax=0的一个基础解系,证明:η*,η*+ξ1,η*+ξ2,…,η*+ξn-r是Ax=b的n-r+1个线性无关的解向量.
设η*为非齐次线性方程组Ax=b的一个特解,ξ1,ξ2,…,ξn-r是其导出组Ax=0的一个基础解系,证明:η*,η*+ξ1,η*+ξ2,…,η*+ξn-r是Ax=b的n-r+1个线性无关的解向量.
admin
2018-10-22
44
问题
设η
*
为非齐次线性方程组Ax=b的一个特解,ξ
1
,ξ
2
,…,ξ
n-r
是其导出组Ax=0的一个基础解系,证明:η
*
,η
*
+ξ
1
,η
*
+ξ
2
,…,η
*
+ξ
n-r
是Ax=b的n-r+1个线性无关的解向量.
选项
答案
由A(η
*
+ξ
1
)=Aη
*
+Aξ
1
=b+0=b的解. 故η
*
+ξ
1
是Ax=b的解. 设存在任意实数k
0
,k
1
,…,k
n-r
,使得k
0
η
*
+k
1
(η
*
+ξ
1
)+…+k
n-r
(η
*
+ξ
n-r
)=0. (1) 整理得 (k
0
+k
1
+…+k
n-r
)η
*
+k
1
ξ
1
1+k
2
ξ
2
+…+k
n-r
?ξ
n-r
1 (2) (2)式两端左乘A,由Aξ
i
=0,i=1,2,…,n-r,得(k
0
+k
1
+…+k
n-r
)Aη
*
=(k
0
+k
1
+…+k
n-r
)b=0. 因b≠0,则k
0
+k
1
+…+k
n-r
=0. (3) 把(3)式代入(2)式得k
1
ξ
1
+k
2
ξ
2
…+k
n-r
ξ
n-r
=0. (4) 因ξ
1
,ξ
2
,…,ξ
n-r
是Ax=0的基础解系,则ξ
1
,ξ
2
,…,ξ
n-r
线性无关,故k
1
=k
2
=…k
n-r
=0. (5) 把(5)式代入(3)式得k
0
=0. 从而(1)式成立时,k
0
,k
1
,…,k
n-r
,必须全为零. 故η
*
,η
*
+ξ
1
,η
*
+ξ
2
,…,η
*
+ξ
n-r
线性无关. 因此η
*
,η
*
+ξ
1
,η
*
+ξ
2
,…,η
*
+ξ
n-r
是Ax=b的n-r+1个线性无关的解向量.
解析
转载请注明原文地址:https://kaotiyun.com/show/yayR777K
本试题收录于:
线性代数(经管类)题库公共课分类
0
线性代数(经管类)
公共课
相关试题推荐
Thefamilyarecallingan______(depend)investigationintothecauseofthedeaths.
a___________n.可用,可用的东西
《金鲤鱼的百裥裙》作者叙述故事的基本笔法是
有一年,十月的风又翻动起安详的落叶,我在园中读书,听见两个散步的老人说:“没想到这园子有这么大。”我放下书,想,这么大一座园子,要在其中找到她的儿子,母亲走过了多少焦灼的路。多年来我头一次意识到,这园中不单是处处都有过我的车辙,有过我的车辙的地方也都有过母
《容忍与自由》所体现的基本社会理念是()
《吃饭》一文中,“人类所有的创造和活动(包括写文章在内),不仅表示头脑的充实,并且证明肠胃的空虚”这句话的意思是()
判断矩阵是否可逆,若可逆,求出它的逆矩阵.
设向量α=(1,2,1)T,β=(一1,一2,一3)T,则3α一2β________.
已知四元非齐次线性方程组Ax=b的r(A)一3,α1,α2,α3是它的三个解向量,且求该方程组的通解.
n阶矩阵A的秩为n—1且矩阵A的各行元素之和为0,齐次线性方程组Ax=0的通解为______.
随机试题
男性,67岁,肺源性心脏病急性加重期患者。血气分析:pH7.25,PaCO29.3kPa(70mmHg),HCO3-30mmol/L。对其酸碱失衡的治疗措施应为:()
A.3~4个月B.6个月C.1~3个月D.7~10天E.4~6个月甲亢加服复方碘溶液在术前
鸭浆膜炎的特征性病变是
下述不属于脑挫伤诊断要点的是
常见五环三萜皂苷元的结构类型包括
运用成本模型确定企业最佳现金持有量时,现金持有量与持有成本之间的关系表现为()。
上市公司在其年度资产负债表日至财务报告批准报出日之间发生的下列事项中,属于资产负债表日后非调整事项的有()。
细胞膜的化学成分主要是()、脂类和多糖。
小刘正在整理公司各产品线介绍的PowerPoint演示文稿,因幻灯片内容较多,不易于对各产品线演示内容进行管理。快速分类和管理幻灯片的最优操作方法是()
Iwonderifyourealizejusthowmanyothersshareyourproblem.Itissocommonforpeopletodistortthetruthaboutthemselves
最新回复
(
0
)