首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
自考
设η*为非齐次线性方程组Ax=b的一个特解,ξ1,ξ2,…,ξn-r是其导出组Ax=0的一个基础解系,证明:η*,η*+ξ1,η*+ξ2,…,η*+ξn-r是Ax=b的n-r+1个线性无关的解向量.
设η*为非齐次线性方程组Ax=b的一个特解,ξ1,ξ2,…,ξn-r是其导出组Ax=0的一个基础解系,证明:η*,η*+ξ1,η*+ξ2,…,η*+ξn-r是Ax=b的n-r+1个线性无关的解向量.
admin
2018-10-22
51
问题
设η
*
为非齐次线性方程组Ax=b的一个特解,ξ
1
,ξ
2
,…,ξ
n-r
是其导出组Ax=0的一个基础解系,证明:η
*
,η
*
+ξ
1
,η
*
+ξ
2
,…,η
*
+ξ
n-r
是Ax=b的n-r+1个线性无关的解向量.
选项
答案
由A(η
*
+ξ
1
)=Aη
*
+Aξ
1
=b+0=b的解. 故η
*
+ξ
1
是Ax=b的解. 设存在任意实数k
0
,k
1
,…,k
n-r
,使得k
0
η
*
+k
1
(η
*
+ξ
1
)+…+k
n-r
(η
*
+ξ
n-r
)=0. (1) 整理得 (k
0
+k
1
+…+k
n-r
)η
*
+k
1
ξ
1
1+k
2
ξ
2
+…+k
n-r
?ξ
n-r
1 (2) (2)式两端左乘A,由Aξ
i
=0,i=1,2,…,n-r,得(k
0
+k
1
+…+k
n-r
)Aη
*
=(k
0
+k
1
+…+k
n-r
)b=0. 因b≠0,则k
0
+k
1
+…+k
n-r
=0. (3) 把(3)式代入(2)式得k
1
ξ
1
+k
2
ξ
2
…+k
n-r
ξ
n-r
=0. (4) 因ξ
1
,ξ
2
,…,ξ
n-r
是Ax=0的基础解系,则ξ
1
,ξ
2
,…,ξ
n-r
线性无关,故k
1
=k
2
=…k
n-r
=0. (5) 把(5)式代入(3)式得k
0
=0. 从而(1)式成立时,k
0
,k
1
,…,k
n-r
,必须全为零. 故η
*
,η
*
+ξ
1
,η
*
+ξ
2
,…,η
*
+ξ
n-r
线性无关. 因此η
*
,η
*
+ξ
1
,η
*
+ξ
2
,…,η
*
+ξ
n-r
是Ax=b的n-r+1个线性无关的解向量.
解析
转载请注明原文地址:https://kaotiyun.com/show/yayR777K
本试题收录于:
线性代数(经管类)题库公共课分类
0
线性代数(经管类)
公共课
相关试题推荐
s_______vt.单一化,简单化
假冒伪劣商品涉及的范围越来越广,请以MyViewonFakeCommodities为题写一篇关于假冒伪劣商品的危害和怎样杜绝假冒伪劣商品的150词左右的英语短文。
庄子用这段话来说明什么道理?这里运用了哪几种论证方法?
已知线性方程组求当a为何值时,方程组无解、有解.
设3阶矩阵则(AT)1=__________.
计算行列式的值.
设向量α=(1,2,1)T,β=(一1,一2,一3)T,则3α一2β________.
已知行列式则=__________.
方程组中有_________个自由未知量.
随机试题
在绘制网络图时,应用较多的方法是【】
体层摄影中,X线曝光期间连杆摆过的角度称为
轻刺激能唤醒,醒后能进行简短而正确的交谈,见于下列哪种意识障碍
A、肾皮质B、肾髓质C、肾间质D、肾盂E、肾盏血行感染引起的急性肾盂肾炎,细菌最先侵犯
已知图中所示的三根弹簧的劲度系数分别为K1,K2,K3,振体的质量为m,则此系统沿铅垂方向振动的固有频率为( )。
金属材料物理特性随焊接温度的变化是影响焊接应力与变形的主要因素,而材料的()随温度的变化是决定焊接热应力,应变的重要物理特性。
韩国人受西方文化影响,接受礼品要当面打开。()
儿童的心理障碍更多以()为主。
不愿提高政府债务上限的共和党众议员和参议员将____。他们在____具有可怕后果的政策,而最终的结果将与他们声称所要的截然相反,因为违约将立刻让政府的重要性增加而不是减少。依次填入画横线部分最恰当的一项是()。
菲利普·莫里斯发行一种半年付息的债券,具有如下特性:利率为8%,收益率为8%,期限为15年,麦考利久期为10年。(1)利用上述信息,计算调整后的久期。(2)解释为什么调整后的久期是计算债券利率敏感性的较好方法。(3)确定调整后的持有
最新回复
(
0
)