首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求下列方程的通解: (Ⅰ) y"-3y’=2-6x; (Ⅱ)y"+y=cosxcos2x.
求下列方程的通解: (Ⅰ) y"-3y’=2-6x; (Ⅱ)y"+y=cosxcos2x.
admin
2017-07-10
36
问题
求下列方程的通解:
(Ⅰ) y"-3y’=2-6x; (Ⅱ)y"+y=cosxcos2x.
选项
答案
(Ⅰ)先求相应齐次方程的通解,由于其特征方程为λ
2
-3λ=λ(λ-3)=0,所以通解为 [*]=C
1
+C
2
e
3x
. 再求非齐次方程的特解,由于其自由项为一次多项式,而且0是特征方程的单根,所以特解应具有形式y
*
(x)=x(Ax+B),代入原方程,得 [y
*
(x)]"-3[y
*
(x)]’=2A-3(2Ax+B)=-6Ax+2A-3B=2-6x. 比较方程两端的系数,得[*]解得A=1,B=0,即特解为y
*
(x)=x
2
.从而,原方程的通解为 y(x)=x
2
+C
1
+C
2
e
3x
,其中C
1
,C
2
为任意常数. (Ⅱ)由于cosxcos2x=[*](cosx+cos3x),根据线性微分方程的叠加原理,可以分别求出y"+y=[*]的特解y
1
*
(x)与y
2
*
(x),相加就是原方程的特解. 由于相应齐次方程的特征方程为λ
2
+1=0,特征根为±i,所以其通解应为C
1
cosx+C
2
sinx;同时y"+y=[*]cosx的特解应具形式:y
1
*
(x)=Axcosx+Bxsinx,代入原方程,可求得A=0,B=[*].即y
1
*
(x)=[*] 另外,由于3i不是特征根,所以另一方程的特解应具形式y
2
*
(x)=Ccos3x+Dsin3x,代入原方程,可得C=[*],D=0.这样,即得所解方程的通解为 y(x)=[*]+C
1
cosx+C
2
sinx,其中C
1
,C
2
为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/zlt4777K
0
考研数学二
相关试题推荐
[*]
A、 B、 C、 D、 C
证明下列函数在(-∞,+∞)内是连续函数:(1)y=3x2+1(2)y=cosx
验证函数yx=C1+C12x是差分方程yx+2-3yx+1+yx=0的解,并求y。=1,y1=3时方程的特解.
本题为“1x”型未定式,除可以利用第二类重要极限进行计算或化为指数函数计算外,由于已知数列的表达式,也可将n换为x转化为函数极限进行计算.一般[*]
微分方程y"-4y=e2x的通解为________.
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向量,其α2,α3,α4线性无关,α1=2α2-α3,如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
设n元线性方程组Ax=b,其中A=,x=(x1,…,xn)T,b=(1,0,…,0)T.(Ⅰ)证明行列式|A|=(n+1)an;(Ⅱ)a为何值时,方程组有唯一解?求x1;(Ⅲ)a为何值时,方程组有无穷多解?求通解.
设曲线方程为y=e-x(x≥0).(Ⅰ)把曲线y=e-x(x≥0)、x轴、y轴和直线x=ξ(ξ>0)所围成平面图形绕x轴旋转一周得一旋转体,求此旋转体的体积V(ξ),求满足(Ⅱ)在此曲线上找一点,使过该点的切线与两个坐标轴所夹平面图形的面积最大
在曲线y=(x-1)2上的点(2,1)处作曲线的法线,由该法线、x轴及该曲线所围成的区域为D(y≥0),则区域D绕x轴旋转一周所成的几何体的体积为__________.
随机试题
A、Sheistheman’ssecretary.B、Sheistheman’sclient.C、Sheistheman’ssalesrepresentative.D、Sheistheman’snewmanager
传统点火系主要由_______组成。
不符合枕骨大孔疝表现的是
患儿,女,7个月。没有明显的传染病接触史,突起高热4天,体温39.5℃左右波动,一直补液及服用退热药治疗,今天发热突然消退,发现全身起了大量玫瑰色斑丘疹。提问1.本病例最可能的诊断是出皮疹后的治疗方法为
电信枢纽楼内,除()外均应设置火灾自动报警装置。
某新建项目,建设期两年,共向银行贷款2000万元,每年使用1000万元,按月均衡使用,银行贷款年利率5%,则在编制投资估算时建设期利息应为()万元。
学生的知识学习过程主要是一个对知识的内在加工过程。它包括三个阶段,即知识获得、知识保持和()。
以下行政处罚方式中,属于限制人身自由的是( )。
确定一个窗体大小的属性是()。
Let’sarrangetheprovisionalmeetingfornextWednesday,eventhoughwemayhavetochangeit.
最新回复
(
0
)