首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设抛物线y=-x2+Bx+C与x轴有两个交点x=a,x=b(a<b),又f(x)在[a,b]上有二阶导数,且f(a)=f(b)=0,若曲线y=f(x)与y=-x2+Bx+C在(a,b)内有一个交点,求证:在(a,b)内存在一点ξ,使得f"(ξ)+2=0.
设抛物线y=-x2+Bx+C与x轴有两个交点x=a,x=b(a<b),又f(x)在[a,b]上有二阶导数,且f(a)=f(b)=0,若曲线y=f(x)与y=-x2+Bx+C在(a,b)内有一个交点,求证:在(a,b)内存在一点ξ,使得f"(ξ)+2=0.
admin
2022-09-05
45
问题
设抛物线y=-x
2
+Bx+C与x轴有两个交点x=a,x=b(a<b),又f(x)在[a,b]上有二阶导数,且f(a)=f(b)=0,若曲线y=f(x)与y=-x
2
+Bx+C在(a,b)内有一个交点,求证:在(a,b)内存在一点ξ,使得f"(ξ)+2=0.
选项
答案
如图所示, [*] 设y=f(x)与y=-x
2
+Bx+C在(a,b)内的交点为(c,f(c))(a<c<b).作辅助函数ψ(x)=f(x)-(-x
2
+ Bx+C), 由题设条件知ψ(x)在[a,b]上也有二阶导数,且ψ(a)= ψ(c)= ψ(b)=0. 由罗尔定理可知,存在ξ
1
∈(a,c),ξ
2
∈(c,b)使得 ψ’(ξ
1
)=f’(ξ
1
)+2ξ
1
-B=0 ψ’(ξ
2
)=f’(ξ
2
)+2ξ
2
-B=0 将函数ψ’(x)在[ξ
1
,ξ
2
]上应用罗尔定理,知存在ξ∈(ξ
1
,ξ
2
)使得 ψ"(ξ)=f"(ξ)+2=0,a<ξ
1
<ξ<ξ
2
<b 即f"(ξ)+2=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/0MR4777K
0
考研数学三
相关试题推荐
设f(x)=在x=0处连续,则a=_____________.
设f(x)的一个原函数为F(x),且F(x)为方程xy’+y=ex的满足y(x)=1的解.求的和.
设f(x)在区间[a,b]上满足a≤f(x)≤b,且有|f’(x)|≤q<1,令un=f(un-1)(n=1,2,…),u0∈[a,b],证明:级数(un+1-un)绝对收敛.
设级数条件收敛,则p的取值范围是=_____________.
设直线y=ax与抛物线y=x2所围成的图形面积为S1,它们与直线x=1所围成的图形面积为S2,且a<1.确定a,使S1+S2达到最小,并求出最小值;
随机地向半圆内掷一点,点落在半圆内任何区域的概率与区域的面积成正比,则原点与该点的连线与x轴夹角小于的概率为_________.
已知f(x)是周期为5的连续函数,它在x=0的某个邻域内满足关系式f(1+sinx)-3f(1-sinx)=8x+α(x),其中α(x)是当x→0时比x高阶的无穷小量,且f(x)在x=1处可导,求曲线y=f(x)在点(6,f(6))处的
设正项数列{an}单调减少,且发散,问是否收敛,说明理由.
(x3+sin2x)cos2xdx=________。
若函数f(x)在(0,+∞)上有定义,在x=1点处可导,且对于任意的正数a,b总有f(ab)=f(a)+f(b),证明:f(x)在(0,+∞)上处处可导,且f’(x)=.
随机试题
构成教育法律责任的前提条件是()
张某和季某经过数年艰苦笔耕,于1995年3月共同创作完成了长篇小说《城春草木深》。张某于2002年6月1日病故,季某于2006年10月6日辞世。根据我国《著作权法》,该长篇小说著作财产权的法律保护期终止于()
患者,男,15岁。平素体健,每于剧烈运动后出现胸闷、咳嗽和呼吸困难。其最可能的诊断是
下列哪些研究没有对照组并因此归为分析性研究
影响检验的可靠性的因素包括()。
行政机关依法变更或者撤回已经生效的行政许可时,给公民、法人或者其他组织造成财产损失的,行政机关应当依法()。
“凡属正确的领导,必须从群众中来,到群众中去……如此无限循环,一次比一次地更正确、更生动、更丰富。这就是马克思主义的认识论。”这段话指出了
执行下面的程序段后,S的值为【】。s=5Fori=2.6To4.9Step0.6s=s+1Nexti
Readthetextbelowaboutopinionsonethicsandmissionstatements.Inmostofthelines(34-45),thereisoneextraword.Itis
Teachersneedtobeawareoftheemotional,intellectual,andphysicalchangesthatyoungadultsexperience.Andtheyalsoneed
最新回复
(
0
)