首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是3阶实对称矩阵,A~B,其中B= (1)求A的特征值; (2)若ξ1=[1,1,0]T,ξ2=[2,2,0]T,ξ3=[0,2,1]T,ξ4=[5,-1,-3]T都是A的对应于λ1=λ2=0的特征向量,求A的对应于λ3的特征向量;
设A是3阶实对称矩阵,A~B,其中B= (1)求A的特征值; (2)若ξ1=[1,1,0]T,ξ2=[2,2,0]T,ξ3=[0,2,1]T,ξ4=[5,-1,-3]T都是A的对应于λ1=λ2=0的特征向量,求A的对应于λ3的特征向量;
admin
2018-09-20
37
问题
设A是3阶实对称矩阵,A~B,其中B=
(1)求A的特征值;
(2)若ξ
1
=[1,1,0]
T
,ξ
2
=[2,2,0]
T
,ξ
3
=[0,2,1]
T
,ξ
4
=[5,-1,-3]
T
都是A的对应于λ
1
=λ
2
=0的特征向量,求A的对应于λ
3
的特征向量;
(3)求矩阵A.
选项
答案
(1)由A~B,知A,B有相同的秩和特征值.显然r(B)=1,B有特征值λ
1
=λ
2
=0且λ
1
+λ
2
+λ
3
=[*]=1+4+9,得λ
3
=14.故A有特征值λ
1
=λ
2
=0,λ
3
=14. (2)λ
1
=λ
2
=0是A的二重特征值,对应的线性无关特征向量最多有两个,由题设知ξ
1
=[1,1,0]
T
,ξ
3
=[0,2,1]
T
线性无关(取ξ
1
,ξ
2
,ξ
3
,ξ
4
的极大线性无关组,不唯一),故取η
1
=ξ
1
,η
2
=ξ
3
为λ=0的线性无关特征向量,因A是实对称矩阵,将λ
3
=14对应的特征向量设为η
3
=[x
1
,x
2
,x
3
]
T
,则η
3
与η
1
,η
2
正交,即η
1
T
η
3
=0,η
2
T
η
3
=0.于是有 [*] 解得基础解系为η
3
=[1,一1,2]
T
,故λ
3
=14对应的特征向量为kη
3
(其中k为任意不为0的常数). (3)令P=[η
1
,η
2
,η
3
],则 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/0kW4777K
0
考研数学三
相关试题推荐
参数a取何值时,线性方程组有无数个解?求其通解.
设α1,α2,…,αn为n个线性无关的n维向量,且与向量β正交,证明:向量β为零向量.
设随机变量X,Y相互独立,且又设向量组α1,α2,α3线性无关,求α1+α2,α2+Xα3,Yα1线性相关的概率.
设A是n阶矩阵,α1,α2,…,αn是n维列向量,且αn≠0,若Aα1=α2,Aα2=α3,…,Aαn一1=αn,Aαn=0.证明:α1,α2,…,αn线性无关;
设证明:f(x,y)在点(0,0)处可微,但在点(0,0)处不连续.
已知线性方程组问:(1)a,b为何值时,方程组有解?(2)有解时,求出方程组导出组的一个基础解系;(3)有解时,求出方程组导出组的全部解.
已知三元二次型f(x1,x2,x3)=XTAX,矩阵A的对角元素之和为3,且AB+B=0,其中(1)用正交变换将二次型化为标准形,并写出所用的坐标变换;(2)求出此二次型;(3)若β=[4,一1,0]T,求A*β.
计算行列式Dn=
设z=z(x,y)是由x2—6xy+10y2—2yz—z2+18=0确定的函数,求z=z(x,y)的极值点和极值。
(88年)已给线性方程组问k1和k2各取何值时,方程组无解?有唯一解?有无穷多解?在方程组有无穷多解的情形下,试求出一般解.
随机试题
用标准化的心理量表对被试的某些心理品质进行测定来研究心理的方法为_______。
舌的发育始于
出让国有土地使用权人可以将土地使用权()。
名义利率越大,计息周期越短,实际利率与名义利率的差异就越小。()
下列关于会计含义的表述,不正确的是()。
()是指一个行业内部买方和卖方的数量及其规模分布、产品差别的程度和新企业进入该行业的难易程度的综合状态。
设连续型随机变量X的分布函数为试求:X的概率密度函数.
当用各种清病毒软件都不能清除软盘上的系统病毒时,则应对此软盘
A、Theywereeverywhere.B、Theyweresplashyonwholepage.C、Theyweresmallandsubdued.D、Theyappearedonthefrontpageofn
Borrow,SpeculateandHopeTheNationalAssociationofSecuritiesDealersisinvestigatingwhethersomebrokeragehousesare
最新回复
(
0
)