首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,6)内可导,则存在ξ∈(a,b),使得f(b)—f(A)=f’(ξ)(b—a)。 (Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且f’(x)=A,则f+’(0)
(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,6)内可导,则存在ξ∈(a,b),使得f(b)—f(A)=f’(ξ)(b—a)。 (Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且f’(x)=A,则f+’(0)
admin
2019-05-08
106
问题
(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,6)内可导,则存在ξ∈(a,b),使得f(b)—f(A)=f’(ξ)(b—a)。
(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且
f’(x)=A,则f
+
’
(0)存在,且f
+
’
(0)=A。
选项
答案
(Ⅰ)作辅助函数φ(x)=f(x)一f(a)一[*](x—a),易验证φ(x)满足:φ(a)=φ(b);φ(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且 [*] 根据罗尔定理,可得在(a,b)内至少有一点ξ,使φ’(ξ)=0,即 [*] 所以f(b)—f(A)=f’(ξ)(b—a)。 (Ⅱ)任取x
0
∈(0,δ),则函数f(x)满足在闭区间[0,x
0
]上连续,开区间(0,x
0
)内可导,因此由拉格朗日中值定理可得,存在 [*] 故f
+
’
(0)存在,且f
+
’
(0)=A。
解析
转载请注明原文地址:https://kaotiyun.com/show/2sJ4777K
0
考研数学三
相关试题推荐
求∫arcsinxarccosxdx.
设D是由点O(0,0),A(1,2)及B(2,1)为顶点构成的三角形区域,计算dxdy.
设f(x)在[0,1]上二阶连续可导且f(0)=f(1),又|f’’(x)|≤M,证明:|f’(x)|≤.
设二维随机变量(X,Y)的联合概率密度为求:(Ⅰ)系数A;(Ⅱ)(X,Y)的联合分布函数;(Ⅲ)边缘概率密度;(Ⅳ)(X,Y)落在区域R:x>0,y>0,2x+3y<6内的概率。
设f(x)在[a,b]上连续,且f’’(x)>0,对任意的x1,x2∈[a,b]及0<λ<1,证明:f[λx1+(1-λ)x2]≤λf(x1)+(1-λ)f(x2).
设f(x)在[a,+∞)上连续,f(x)<0,而f(x)存在且大于零.证明:f(x)在(a,+∞)内至少有一个零点.
设u=u(x,y)由方程组u=f(x,y,z,t),g(y,z,t)=0,h(z,t)=0确定,其中f,g,h连续可偏导且.
设A是三阶矩阵,α1,α2,α3为三个三维线性无关的列向量,且满足Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.(1)求矩阵A的特征值;(2)判断矩阵A可否对角化.
确定常数a,b,c的值,使得当x→0时,ex(1+bx+cx2)=1+ax+ο(x3).
设随机变量x服从几何分布G(θ,其中0<θ<1,若P{X≤2}=,则P{X=3}=________。
随机试题
下列情况中,发价不得撤销的是()
阅读余光中《听听那冷雨》中的文字,然后回答问题。雨不但可嗅,可观,更可以听。听听那冷雨。听雨,只要不是石破天惊的台风暴雨,在听觉上总是一种美感。大陆上的秋天,无论是疏雨滴梧桐,或是骤雨打荷叶,听去总有一点凄凉,凄清,凄楚。于今在岛上回味,则在凄楚
烟雾病是颅内哪部分血管的病变引起的
中药材气调养护,充N2降氧防虫的氧气浓度控制在气调养护,以杀虫为目的,其C02浓度应控制在
脾虚下陷的主要症状有
地下连续墙混凝土浇灌应满足以下要求()。[2014年真题]
MIPS作为单位,是用来衡量计算机系统的()性能指标。
某研究机构对于本地区的劳动力市场状况进行了研究,结果发现以下几种情况:第一,本地区的大部分企业都是劳动密集型企业,同时企业所生产的产品的需求价格弹性也比较大;第二,本地区男性劳动力和女性劳动力之间的交叉工资弹性较高,而且为负值;第三,本地区目前处于一种劳动
下列对洋务运动的指导思想的表述正确的是
PapermakinginChina________fromtheretoNorthAfricaandEurope.
最新回复
(
0
)