首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是三阶矩阵,α1,α2,α3为三个三维线性无关的列向量,且满足Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2. (1)求矩阵A的特征值; (2)判断矩阵A可否对角化.
设A是三阶矩阵,α1,α2,α3为三个三维线性无关的列向量,且满足Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2. (1)求矩阵A的特征值; (2)判断矩阵A可否对角化.
admin
2018-01-23
91
问题
设A是三阶矩阵,α
1
,α
2
,α
3
为三个三维线性无关的列向量,且满足Aα
1
=α
2
+α
3
,Aα
2
=α
1
+α
3
,Aα
3
=α
1
+α
2
.
(1)求矩阵A的特征值;
(2)判断矩阵A可否对角化.
选项
答案
(1)因为α
1
,α
2
,α
3
线性无关,所以α
1
+α
2
+α
3
≠0, 由A(α
1
+α
2
+α
3
)=2(α
1
+α
2
+α
3
),得A的一个特征值为λ
1
=2; 又由A(α
1
-α
2
)=-(α
1
-α
1
),A(α
2
-α
3
)=-(α
2
-α
3
), 得A的另一个特征值为λ
2
=-1.因 为α
1
,α
2
,α
3
线性无关,所以α
1
-α
2
与α
2
-α
3
也线性无关,所以 λ
2
=-1为矩阵A的二重 特征值,即A的特征值为2,-1,-1. (2)因为α
1
-α
2
,α
2
-α
3
为属于二重特征值-1的两个线性无关的特征向量,所以A一定 可以对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/iNX4777K
0
考研数学三
相关试题推荐
设A是n阶矩阵,A*是A的伴随矩阵,若|A|=a,则行列式等于().
设α1,α2,α3,α4为四维列向量组,且α1,α2,α3线性无关,α4=α1+α2+2α3.已知方程组[α1一α2,α2+α3,一α1+aα2+α3]X=α4有无穷多解.(1)求a的值;(2)用基础解系表示该方程组的通解.
已知线性方程组问:(1)a,b为何值时,方程组有解?(2)有解时,求出方程组导出组的一个基础解系;(3)有解时,求出方程组导出组的全部解.
已知三元二次型f(x1,x2,x3)=XTAX,矩阵A的对角元素之和为3,且AB+B=0,其中 (1)用正交变换将二次型化为标准形,并写出所用的坐标变换;(2)求出此二次型;(3)若β=[4,一1,0]T,求Anβ.
设A为三阶实对称矩阵,λ1=8,λ2=λ3=2是其特征值.已知对应λ1=8的特征向量为α1=[1,k,1]T,对应λ2=λ3=2的一个特征向量为α2=[-1,1,0]T.试求参数k及λ2=λ3=2的一个特征向量和矩阵A.
已知商品的需求量D和供给量S都是价格p的函数:D=D(p)=,S=S(p)=bp,其中a>0,b>0为常数;价格P是时间t的函数,且满足方程=k[D(p)一S(p)](k为正常数).①假设当t=0时,价格为1.试求:(1)需求量等于供
设函数f(x)=(x—x0)nφ(x)(n为任意自然数),其中函数φ(x)当x=x0时连续.(1)证明f(x)在点x=x0处可导;(2)若φ(x)≠0,问函数f(x)在x=x0处有无极值,为什么?
已知矩阵A=(Ⅰ)求A99,(Ⅱ)设3阶矩阵B=(a1,a2,a3)满足B2=BA.记B100=(β1,β2,β3,风),将Jβ1,β2,β3分别表示为a1,a2,a3的线性组合.
已知f(x)和g(x)在[a,b]上连续,在(a,b)内具有二阶导数,且在(a,b)内存在相等的最大值,又设f(a)=g(a),f(b)=g(b),试证明:存在ξ∈(a,b)使得f’’(ξ)=g’’(ξ)。
已知n阶矩阵求|A|中元素的代数余子式之和,第i行元素的代数余子式之和,i=1,2,…,n及主对角元的代数余子式之和
随机试题
某二叉树有5个度为2的结点,则该二叉树中的叶子结点数是()。
A.从出生到1岁B.3~7岁C.10~20岁D.18~25岁E.6~12岁儿童少年身体发育的年龄分期,学前期是
A.氯唑西林B.万古霉素C.氟康唑D.哌拉西林E.克林霉素由于铜绿假单胞菌导致的医院获得性肺炎宜选药物是
呕吐大量隔夜宿食可见于
四逆散与四逆汤的组成中均含有药物是
下列选项中,属于代理或者可以适用代理的情形是()。
重点访问(北大2009年研)
判断下面说法是错误的。
计算机安全是指计算机资产安全,即()。
A、明天上午B、明天中午C、明天晚上D、今天晚上B根据女的说的“另外,明天中午的宴会定在哪儿了”这句话,可知宴会安排在明天中午,所以选B。
最新回复
(
0
)