首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)=(a-1)x12+(a-1)x22+2x32+2x1x2(a>0)的秩为2. (1)求a;(2)用正交变换法化二次型为标准形.
设二次型f(x1,x2,x3)=(a-1)x12+(a-1)x22+2x32+2x1x2(a>0)的秩为2. (1)求a;(2)用正交变换法化二次型为标准形.
admin
2019-08-28
42
问题
设二次型f(x
1
,x
2
,x
3
)=(a-1)x
1
2
+(a-1)x
2
2
+2x
3
2
+2x
1
x
2
(a>0)的秩为2.
(1)求a;(2)用正交变换法化二次型为标准形.
选项
答案
(1)A=[*],因为二次型的秩为2,所以r(A)=2,从而a=2. (2)A=[*],由|λE-A|=0得λ
1
=λ
2
=2,λ
3
=0. 当λ=2时,由(2E-A)X=0得λ=2对应的线性无关的特征向量为α
1
=[*],α
2
=[*] 当λ=0时,由(0E-A)X=0得λ=0对应的线性无关的特征向量为α
3
=[*] 因为α
1
,α
2
两两正交,单位化得 [*] 令[*],Q
T
AQ=[*],则f=X
T
AX[*]Y
T
(Q
T
AQ)Y=2y
1
2
+2y
2
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/3vJ4777K
0
考研数学三
相关试题推荐
设A是n阶实反对称矩阵,x,y是实n维列向量,满足Ax=y,证明x与y正交.
已知A是m×n矩阵,B是n×p矩阵,如AB=C,且r(C)=m,证明A的行向量线性无关.
设A为三价非零矩阵,B=,且AB=0,则Ax=0的通解是___________.
设A是n阶非零矩阵,Am=0,下列命题中不一定正确的是
设二维连续型随机变量(X,Y)在区域D上服从均匀分布,其中D={(x,y)|x+y|≤1,|x一y|≤1},求X的边缘密度fX(x)与在X=0条件下,关于Y的条件密度fY|X(y|0).
(2005年)设f(x),g(x)在[0,1]上的导数连续,且f(x)=0,f’(x)≥0,g’(x)≥0.证明:对任何a∈[0,1],有∫0ag(x)f’(x)dx+∫01f(x)g’(x)dx≥f(a)g(1).
(2012年)证明:
确定a、b,使得当x→0时,a—cosbx+sin3x与x3为等价无穷小.
已知二次型f(x1,x2,x3)=(1-a)x12+(1-a)x22+2x32+2(1+a)x1x2的秩为2.求方程f(x1,x2,x3)=0的解.
下列说法正确的是().
随机试题
Iwouldappreciate______itasecret.
内源性凝血系统的始动因子是
tllerapyavailability(TA)
就城市整体而言,经济发达的城市中()占有较高的比重。
建筑施工企业在结构和安装装饰装修施工阶段,应采取以下防止扬尘污染的措施()。
下列各项中,属于营业税应税行为的有()。(2012年真题)
在妇女社会工作中,“妇女为本”的实践原则是指()。
简述幼儿家庭教育的作用。
价值规律的内容是
网络由6个路由器互连而成,路由器之间的链路费用如下图所示,从PC机到服务器的最短路径是(23),通路费用是(24)。(24)
最新回复
(
0
)