首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在x=0的邻域内连续可导,g(x)在x=0的邻域内连续,且=0,又f’(x)=一2x2+∫0xg(x—t)dt,则( ).
设f(x)在x=0的邻域内连续可导,g(x)在x=0的邻域内连续,且=0,又f’(x)=一2x2+∫0xg(x—t)dt,则( ).
admin
2016-10-13
84
问题
设f(x)在x=0的邻域内连续可导,g(x)在x=0的邻域内连续,且
=0,又f’(x)=一2x
2
+∫
0
x
g(x—t)dt,则( ).
选项
A、x=0是f(x)的极大值点
B、x=0是f(x)的极小值点
C、(0,f(0))是曲线y=f(x)的拐点
D、x=0不是f(x)的极值点,(0,f(0))也不是曲线y=f(x)的拐点
答案
C
解析
由
=0得g(0)=g’(0)=0,f’(0)=0,
f’(x)=一2x
2
+∫
0
x
g(x—t)dt=一2x
2
一∫
0
x
g(x—t)d(x—t)
=一2x
2
+∫
0
x
g(u)du,
f"(x)=一4x+g(x),f"(0)=0,f"’(x)=一4+g’(x),f"’(0)=一4<0,
因为f"’(0)=
=一4<0,所以存在δ>0,当0<|x|<δ时,
<0,从而当x∈(一δ,0)时,f"(x)>0,当x∈(0,δ)时,f"’(x)<0,选(C).
转载请注明原文地址:https://kaotiyun.com/show/46u4777K
0
考研数学一
相关试题推荐
设二阶常系数微分方程y〞+αyˊ+βy=ye2x有一个特解为y=e2x+(1+x)ex,试确定α,β,γ和此方程的通解.
f(x)在[a,b]上有二阶连续导数,且满足方程f〞(x)+x2fˊ(x)-2f(x)=0,证明:若f(a)=f(b)=0,则f(x)在[a,b]上恒为0.
设f(x)有二阶连续导数,且f’(0)=0,则
若二阶常系数线性齐次微分方程y"+ay’+by=0的通解为y=(C1+C2x)ex,则非齐次方程y"+ay’+by=x满足条件y(0)=2,y’(0)=0的解为y=___________.
设f(x,y)在(x0,y0)某邻域有定义,且满足:f(x,y)=f(x0,y0)+a(x一x0)+b(y—y0)+a(ρ)(ρ→0),其中a,b为常数.则
设f(x,y)=|x—y|≯(z,y),其中φ(x,y)在点(0,0)的某邻域内连续.则φ(0,0)=0是f(x,y)在点(0,0)处可微的()
设函数f(x)在x=2的某邻域内可导,且f(x)=ef(x),f(2)=1,计算f(n)(2).
已知f(x)是周期为5的连续函数,它在x=0的某邻域内满足关系式:f(1+sinx)一3f(1一sinx)=8x+a(x),其中a(x)是当x→0时比x高阶的无穷小,且f(x)在x=1处可导,求y=f(x)在点(6,f(6))处的切线方程.
随机试题
某糖果厂生产两种糖果,A种糖果每箱获利润40元,B种糖果每箱获利润50元,其生产过程分为混合、烹调、包装三道工序,下袁为每箱糖果生产过程中所需平均时间(单位:分钟)每种糖果的生产过程中,混合的设备至多能用12小时,烹调的设备至多能用30小时,包装的设备
竖井的井壁应是耐火极限不低于()的非燃烧体。
某农场拟于2006年初在某河流上游植树造林500公顷,需要各类投资共5000万元。农场将承包该林地并拟于2012年初择伐树木后,将林地无偿移交给地方政府。预计所伐木材销售净收入为每公顷12万元。由于流域水土得到保持,气候环境得到改善,预计流域内3万
社会主义核心价值体系是建设和谐文化的根本,它的基本内容包括()。
张某因犯罪被判处剥夺政治权利3年,在此期间,张某的下列行为中符合法律规定的是()。
党的十九大提出以党的政治建设为统领,全面推进党的政治建设、思想建设、组织建设、作风建设、纪律建设,把制度建设贯穿其中,并特别强调把党的政治建设摆在首位。党的政治建设的首要任务是()
嗅探器改变了网络接口的工作模式,使得网络接口____________。
有职工工资表(职工号、姓名、日期、基本工资、奖金、工资合计),其中“工资合计”等于同一行数据的“基本工资”与“奖金”之和,在职工工资表中插入一行数据时(设一次只插入一行数据)能实现自动计算“工资合计”列的值的代码是______。A)ALTERTABLE
下列叙述中正确的是
在标准ASCII编码表中,数字码、小写英文字母和大写英文字母的前后次序是()。
最新回复
(
0
)