首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设{un),{cn)为正项数列,证明: (1)若对一切正整数n满足cnun-cn+1un+1≤0,且也发散; (2)若对一切正整数n满足也收敛.
设{un),{cn)为正项数列,证明: (1)若对一切正整数n满足cnun-cn+1un+1≤0,且也发散; (2)若对一切正整数n满足也收敛.
admin
2018-05-25
103
问题
设{u
n
),{c
n
)为正项数列,证明:
(1)若对一切正整数n满足c
n
u
n
-c
n+1
u
n+1
≤0,且
也发散;
(2)若对一切正整数n满足
也收敛.
选项
答案
显然[*]为正项级数. (1)因为对所有n满足c
n
u
n
-c
n+1
u
n+1
≤0,于是c
n
u
n
≤c
n+1
n+1
=>c
n
u
n
≥…≥c
1
1
n
>0, 从而[*]也发散. (2)因为对所有n满足 [*] 则c
n
u
n
-c
n+1
u
n+1
≥au
n+1
,即 c
n
u
n
≥(c
n+1
+a)u
n+1
,所以 [*] 于是 [*] 因为 [*] 也收敛.
解析
转载请注明原文地址:https://kaotiyun.com/show/5KX4777K
0
考研数学三
相关试题推荐
设f(x)=,为了使f(x)对一切x都连续,求常数a的最小正值.
试讨论函数在点x=0处的连续性.
设a>0,x1>0,xn+1=,n=1,2,…,试求.
设常数0<a<1,求
证明:方程xα=lnx(α<0)在(0,+∞)上有且仅有一个实根.
设f(x)是在区间[1,+∞)上单调减少且非负的连续函数,证明:(1)存在;(2)反常积分∫1+∞f(x)dx与无穷级数同敛散.
设在区间[e,e2]上,数p,q满足条件px+q≥lnx,求使得积分取得最小值的P,q的值.
设讨论它们在点(0,0)处的①偏导数的存在性:②函数的连续性;③方向导数的存在性;④函数的可微性.
设且f和g具有连续偏导数,求
设且A~B.(1)求a;(2)求可逆矩阵P,使得P-1AP=B.
随机试题
亚欧大陆中部、北美洲中部和南美洲南部分布着()。
给定资料: 1.世界经济的迅猛发展带来了诸如资源短缺、环境污染、臭氧层被破坏、全球气候变暖、生态失衡等一系列世界性的环境恶化问题。同时,随之而来的环境污染对食物的危害,使人们认识到环境污染、自然生态系统失衡,最终将危及人类自身的生存和发展。许多国际环境公
肢体各层面放大率不同,计算放大率的依据是
现浇结构模板安装的轴线位置偏差的允许偏差为()mm。
根据标的物不同,招标发行包括()。
认为动物界也存在教育活动的学者是()。
李进:这学期没有女生获得“银士达”奖学金。王芳:这就是说这学期没人获得“银士达”奖学金。李进:不,事实上有几个男生这学期获得了“银士达”奖学金。王芳的回答可能假设了以下所有的断定,除了:
求∫13dx∫x-12dy.
AgingposesaseriouschallengetoOECD(OrganizationofEconomicCo-operationandDevelopment)countries,inparticular,howtop
【B1】【B19】
最新回复
(
0
)