首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=,求A的特征值与特征向量,并判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵.
设A=,求A的特征值与特征向量,并判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵.
admin
2019-11-25
52
问题
设A=
,求A的特征值与特征向量,并判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵.
选项
答案
|λE-A|=[*]=(λ+a-1)(λ-a)(λ-a-1)=0,得矩阵A的特征值为λ
1
=1-a,λ
2
=a,λ
3
=1+a. (1)当1-a≠a,1-a≠1+a,a≠1+a,即a≠0且a≠[*]时,因为矩阵A有三个不 同的特征值,所以A一定可以对角化. λ
1
=1-a时,由[(1-a)E-A]X=0得ξ
1
=[*]; λ
2
=a时,由(aE-A)X=0得ξ
2
=[*]; λ
3
=1+a时,由[(1+a)E-A]X=0得ξ
3
=[*]. 令P=[*],得P
-1
AP=[*]. (2)当a=0时,λ
1
=λ
3
=1, 因为r(E-A)=2,所以方程组(E-A)X=0的基础解系只含有一个线性无关的解向量, 故矩阵A不可以对角化. (3)当a=[*]时,λ
1
=λ
2
=[*], 因为r([*]E-A)=2,所以方程组([*]E-A)X=0的基础解系只含有一个线性无关的解向量,故A不可以对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/66D4777K
0
考研数学三
相关试题推荐
证明:当x>0时,不等式成立.
设f(x)在[a,b]上连续,a<x1<x2<…<xn<b.试证:在(a,b)内存在ξ,使得
设函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0.求证:(1)存在ξ∈(a,b),使f(ξ)+ξf’(ξ)=0;(2)存在η∈(a,b),使ηf(η)+f’(η)=0.
求的反函数的导数.
已知P为3阶非零矩阵,且满足PQ=O,则()
已知曲线y=y(x)经过点(1,e-1),且在点(x,y)处的切线在y轴上的截距为xy,求该曲线方程的表达式.
a=-5是齐次方程组(Ⅰ)有非零解的()。
求极限=________.
设f(x)和φ(x)在(-∞,+∞)上有定义,f(x)为连续函数,且,(φ)≠0,f(x)有间断点,则
设f(x)在(-∞,+∞)有一阶连续导数,且f(0)=0并存在f"(0).若求F’(x),并证明F’(x)在(-∞,+∞)上连续.
随机试题
田某原为某合伙企业的有限合伙人,后转为普通合伙人。田某对其作为有限合伙人期问合伙企业发生的债务()
为增加银汞合金的强度,采取的主要措施是
下列病症中,哪一项不出现心悸伴心前区痛
水洗不充分的照片,在保存中出现黄色的物质是
按照宪法修改程序的不同,可将宪法分为()。
某建设项目有甲、乙、丙、丁四个设计方案,各方案基本数据如下表所示。现已知标准投资回收期为5年,投资效果系数为0.2,则最佳设计方案是()。
互斥型投资方案经济效果的静态评价方法未能充分反映( )。
下列有关实质性程序时间安排的说法中,错误的有()。
投射指把自己思想、态度、愿望、情绪或特征等,不自觉地反应于外界的事物或他人的一种心理作用。下列不属于投射的是()。
5,6,6,9,(),90
最新回复
(
0
)