首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知0<P(B)<1,且P[(A1+A2)|B]=P(A1|B)+P(A2|B),则下列选项必然成立的是( )
已知0<P(B)<1,且P[(A1+A2)|B]=P(A1|B)+P(A2|B),则下列选项必然成立的是( )
admin
2013-08-30
86
问题
已知0<P(B)<1,且P[(A
1
+A
2
)|B]=P(A
1
|B)+P(A
2
|B),则下列选项必然成立的是( )
选项
A、P[(A
1
+A
2
)|
]=P(A
1
|
)+P(A
2
|
)
B、P(A
1
B+A
2
B)=P(A
1
B)+P(A
2
B)
C、P(A
1
+A
2
)=P(A
1
|B)+P(A
2
|B)
D、P(B)=P(A
1
)P(B|A
1
)+P(A
2
)P(B|A
2
)
答案
B
解析
由P[(A
1
+A
2
)|B|=P(A
1
|B)+P(A
2
|B)
得到
所以P(A
1
B+A
2
B)=P(A
1
B)+P(A
2
B),(B)是答案.
转载请注明原文地址:https://kaotiyun.com/show/6D54777K
0
考研数学一
相关试题推荐
已知函数f(x,y)满足35(x,y)=2(y+1)ex,36(x,0)=(x+1)ex,f(0,y)=y2+2y,求f(x,y)的极值.
[2002年]设向量组α1,α2,α3线性无关,向量β1可由α1,α2,α3线性表示,而向量β2不能由α1,α2,α3线性表示,则对于任意常数k,必有().
已知二次型f(x1,x2,x3)=xTAx在正交变换x=Qy下的标准形为y21+y22,且Q的第3列为求矩阵A;
设二次型f(x1,x2,x3)=xTAx=ax21+2x22-2x23+2bx1x3(b>0),其中二次型的矩阵A的特征值之和为1,特征值之积为-12.求a,b的值;
已知二次型f(x1,x2,x3)=4x22-3x23+4x1x2-4x1x3+8x2x3.用正交变换把二次型f化为标准形,并求出相应的正交矩阵.
求下列函数的导数:
设y=f(x)有二阶连续导数,且满足xy“+3xy‘2=1-e-x.若f(x)在x=0处取得极值,问f(0)是极小值还是极大值?
设f(x)在区间[a,b]上连续,在(a,b)内可导,且f(a)=f(b),f(x)不恒为常数,证明:在(a,b)内至少存在一点ξ,使得f’(ξ)>0.
设f(x,y)连续,改变下列二次积分的积分次序:
设x的概率密度为f(x)=,F(x)是x的分布函数,求Y=F(x)的分布函数和概率密度。
随机试题
根据《合同法》的规定,抵销()
某地卫生行政部门组织考核当地各乡镇儿童计划免疫完成情况,其中需要调查的指标包括建卡率、接种率等,根据WHO推荐的群组抽样法,建卡率应为98%以上,其调查对象的年龄应为()。
房地产经纪人执业资格注册的有效期为3年,自()之日起计算。
下列关于税务行政复议管辖的表述中,正确的有()。
给定资料1.中国共产党第十八届中央委员会第五次全体会议,于2015年10月26日至29日在北京举行。全会提出,提高教育质量,推动义务教育均衡发展,普及高中阶段教育,逐步分类推进中等职业教育免除学杂费。率先从建档立卡的家庭经济困难学生实施普通高中免除学杂费
关于高血压危象下列哪项说法不正确
C对函数f(x)进行偶延拓,使f(x)在(一1,1)上为偶函数,再进行周期为2的周期延拓,然后把区间延拓和周期延拓后的函数展开成傅里叶级数,傅里叶级数的和函数为S(x),则
设A为三阶矩阵,ξ1,ξ2,ξ3是三维线性无关的列向量,且Aξ1=-ξ1+2ξ2+2ξ3,Aξ2=2ξ1-ξ2-2ξ3,Aξ3=2ξ1-2ξ2-ξ3.求|A*+2E|.
Thenewmodelofthecarwasputintoproductionin2007,______helpedtoprovideanother1400jobs.
A、Checkyournumberandcallagain.B、Telltheoperatorwhathashappened.C、Asktheoperatortoputyouthrough.D、Asktheoper
最新回复
(
0
)