首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知0<P(B)<1,且P[(A1+A2)|B]=P(A1|B)+P(A2|B),则下列选项必然成立的是( )
已知0<P(B)<1,且P[(A1+A2)|B]=P(A1|B)+P(A2|B),则下列选项必然成立的是( )
admin
2013-08-30
89
问题
已知0<P(B)<1,且P[(A
1
+A
2
)|B]=P(A
1
|B)+P(A
2
|B),则下列选项必然成立的是( )
选项
A、P[(A
1
+A
2
)|
]=P(A
1
|
)+P(A
2
|
)
B、P(A
1
B+A
2
B)=P(A
1
B)+P(A
2
B)
C、P(A
1
+A
2
)=P(A
1
|B)+P(A
2
|B)
D、P(B)=P(A
1
)P(B|A
1
)+P(A
2
)P(B|A
2
)
答案
B
解析
由P[(A
1
+A
2
)|B|=P(A
1
|B)+P(A
2
|B)
得到
所以P(A
1
B+A
2
B)=P(A
1
B)+P(A
2
B),(B)是答案.
转载请注明原文地址:https://kaotiyun.com/show/6D54777K
0
考研数学一
相关试题推荐
已知为某函数的全微分,则a等于
(2003年试题,一)设α为三维列向量,αT是α的转置,若则αTα=__________.
证明:函数在区域上的最小值为8
确定常数a使向量组α1=(1,1,a)T,α2=(1,a,1)T,α3=(0,1,1)T可由向量组β1=(1,1,a)T,β2=(-2,a,4)T,β3=(-2,a,a)T线性表示,但向量组β1,β2,β3不能由向量组α1,α2,α3线性表示.
设y=f(x)有二阶连续导数,且满足xy“+3xy‘2=1-e-x.若f(x)在x=0处取得极值,问f(0)是极小值还是极大值?
设f(x)在区间[a,b]上连续,在(a,b)内可导,且f(a)=f(b),f(x)不恒为常数,证明:在(a,b)内至少存在一点ξ,使得f’(ξ)>0.
设f(x,y)连续,改变下列二次积分的积分次序:
设f(x),g(x)在区间[-a,a](a>0)上连续,g(x)为偶函数,且f(x)满足条件f(x)+f(-x)=A(A为常数)证明
设函数y=y(x)由参数方程所确定,求:
随机试题
自20世纪90年代以来,经济全球化就以锐不可当之势发展起来。现代信息技术的进步使世界经济连成一体,使市场、金融、生产、区域经济和消费领域发生了巨大的变化,是在第次产业革命之后。()
男,40岁,吸烟史20年,每日2~3包。近日咳嗽加重,X线显示左上肺阴影。支气管镜黏膜活检,可见鳞状上皮。此种病理变化属于
关于克雷伯杆菌肺炎的胸部X线征象。下列各项中错误的是
依据《注册安全工程师管理规定》,注册安全工程师在每个注册期内参加继续教育的时间不少于()学时。
【背景资料】某市政桥梁工程,总包方A市政公司将钢梁安装工程分包给B安装公司。总包方A公司制定了钢梁吊装方案并得到监理工程师的批准。由于工期紧,人员紧缺,B公司将刚从市场招聘的李某与高某经简单内部培训组成吊装组。某日清晨,雾气很
试述有限责任公司董事会的职权。
生活中有一些人会去反复检查门窗确保安全,反复洗手以保持干净等。他们明知这是不合理的,但不得不做,重复这种无意义的动作并为此耗费大量时间,这种病症被称为强迫症。晓晓每天反复洗手的次数是一般人的30倍,可据此认为,晓晓患了强迫症。以下哪项如果为真,最
在“命令窗口”中输入下列命令:SETMARKTO[-]SETCENTURYON?{^2003-04-13}屏幕上的显示结果是
A、 B、 C、 C
DidGrandmaseemforgetfulattheholidaypartieslastmonth?Itcouldbetimetoputheronadiet.Sharply【C1】______calories(卡
最新回复
(
0
)