首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3,α4,β为4维列向量,A=(α1,α2,α3,α4),已知Ax=β的通解为 其中为对应的齐次线性方程组Ax=0的基础解系,k1,k2为任意常数,令B=(α1,α2,α3),试求 By=β的通解.
设α1,α2,α3,α4,β为4维列向量,A=(α1,α2,α3,α4),已知Ax=β的通解为 其中为对应的齐次线性方程组Ax=0的基础解系,k1,k2为任意常数,令B=(α1,α2,α3),试求 By=β的通解.
admin
2021-02-25
60
问题
设α
1
,α
2
,α
3
,α
4
,β为4维列向量,A=(α
1
,α
2
,α
3
,α
4
),已知Ax=β的通解为
其中
为对应的齐次线性方程组Ax=0的基础解系,k
1
,k
2
为任意常数,令B=(α
1
,α
2
,α
3
),试求
By=β的通解.
选项
答案
由题设知r(A)=2,且α
1
-α
2
+2α
3
+α
4
=β,α
1
+2α
2
+0α
3
+α
4
=0,-α
1
+α
2
+α
3
+0α
4
=0,于是有α
1
-α
2
=α
3
,-α
1
-2α
2
=α
4
,2α
1
-5α
2
+0α
3
=β,可见α
1
,α
2
线性无关,于是r(B)=2,且(2,-5,0)
T
为By=β的特解,又由-α
1
+α
2
+α
3
=0,知(1,-1,-1)
T
为By=0的非零解,可作为基础解系,故By=β的通解为 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/8a84777K
0
考研数学二
相关试题推荐
构造正交矩阵Q,使得QTAQ是对角矩阵
设b>a>e,证明:ab>ba.
设A是m×s阶矩阵,B是s×n阶矩阵,且r(B)=r(AB).证明:方程组BX=0与ABX=0是同解方程组.
设A是n阶可逆阵,其每行元素之和都等于常数a,证明:(1)a≠0;(2)A-1的每行元素之和均为.
设f(χ)为连续正值函数,χ∈[0,+∞),若平面区域Rt={(χ,y)}0≤χ≤t,0≤y<f(χ)}(t>0)的形心纵坐标等于曲线y=f(χ)在[0,t]上对应的曲边梯形面积与之和,求f(χ).
设矩阵,B=P—1A*P,求B+2E的特征值与特征向量,其中A*为A的伴随矩阵,E为三阶单位矩阵。
设A=,B=U-1A*U.求B+2E的特征值和特征向量.
设A=,则下列矩阵中与A合同但不相似的是
设y1(x),y2(x)是微分方程yˊˊ+pyˊ+qy=0的解,则由y1(x),y2(x)能构成方程通解的充分条件是().
已知A是三阶矩阵,a1,a2,a3是线性无关的三维列向量,满足(Ⅰ)求矩阵A的特征值;(Ⅱ)求矩阵A的特征向量;(Ⅲ)求矩阵A*一6E的秩.
随机试题
定量分析中的马尔可夫分析可应用于()
银行存款日记账应根据有关会计凭证()
分布到眼的神经有哪些?
桥梁的设计和施工中要进行强度、刚度和稳定性的验算,这里刚度指的是( )。
城市工程管线应结合城市道路网规划,宜采用()。
分析歌曲《月之故乡》要求:写出调式调性。
已知正三棱柱ABC—A1B1C1,底面边长为1,A1A=2AB,M、N分别为CC1、AB的中点,求MN与底面所成的角.
①诗人朗诵能演绎诗歌中情绪的起伏,让听众读者更好更准确地掌握其中的情绪②在国外,诗歌朗诵非常普遍,一般都是诗人自己朗诵、解释自己的诗③随着时代变迁和人们趣味的转移,激情澎湃的马雅可夫斯基渐渐离我们远去④朗诵本身也是一种音律之歌,以人体为乐器,传诵出来
Inasense,thenewprotectionismisnotprotectionismatall,atleastnotinthetraditionalsenseoftheterm.Theoldprotec
下列不属于Diff-SerV定义的3种业务类型的是__________。
最新回复
(
0
)